
DMA Controller

DMA is a device which can acquire complete control of the buses and hence can be used

to transfer data directly from port to memory or vice versa. Transferring data like this can

prove faster because a transfer will consume 2 bus cycles if it is performed using the

processor. So in this approach the processor is bypasses and its cycles are stolen and are

used by the DMA controller.

Direct Memory Access (DMA)

The latch B of the DMA interface is used to hold the higher 4 or 8 bits of the 20 or 24 bit

absolute address respectively. The lower 16bits are loaded in the base address register and

the number of bytes to be loaded are placed in the count register. The DMA requests to

acquire buses through the HOLD signal, it receives a HLDA (Hold Acknowledge) signal

if no higher priority signal is available. On acknowledgment the DMA acquires control of

the buses and can issue signals for read and write operations to memory and I/O ports

simultaneously. The DREQ signals are used by various devices to request a DMA

operation. And if the DMA controller is successful in acquiring the bus it sends back the

DACK signal to signify that the request is being serviced. For the request to be serviced

properly the DMA channel must the programmed accurately before the request.

A single DMA can transfer 8bit operands to and from memory in a single a bus cycle. If

16bit values are to be transmitted then two DMA controllers are required and should be

Cascaded

DMA Programming Model
• DMA has 4 – Channels

• Each Channel can be programmed to transfer a

block of maximum size of 64k.

• For each Channel there is a

• Base Register

• Count Register

• Higher Address Nibble/Byte is placed in Latch B.

• The Mode register is conveyed which Channel is

to be programmed and for what purpose i.e. Read

Cycle, Write Cycle, Memory to memory transfer.

• A request to DMA is made to start it’s transfer.

For More Visit

www.VUAnswer.com

DMA Modes

• Block Transfer

• Single Transfer

• Demand Transfer

In block transfer mode the DMA is

programmed to transfer a block and does not pause or halt until the whole block is

transferred irrespective of the requests received meanwhile.

In Single transfer mode the DMA transfers a single byte on each request and updates the

counter registers on each transfer and the registers need not be programmed again. On the

next request the DMA will again transfer a single byte beginning from the location it last

ended.

Demand transfer is same as block transfer, only difference is that the DREQ signal

remains active throughout the transfer and as soon as the signal deactivates the transfer

stops and on reactivation of the DREQ signal the transfer may start from the point it left.

Terminal count if reached signifies that the whole of the block as requested through some

DMA channel has been transferred.

This is the command register. It is used to program various common parameters of

transfer for all the channels.

For More Visit

www.VUAnswer.com

This register can be used to simulate a DMA request through software (in case of memory

to memory transfer). The lower 2 bits contains the channel number to be requested and

the bit # 2 is set to indicate a request.

This register can be used to mask/unmask requests from a device for a certain DMA

channel. The lower 2 bits contains the channel number and the bit #2 is set if the channel

is to be masked.

This register can also be used to mask the DMA channels. It contains a single bit for each

channel. The corresponding bit is set to mask the requests for that channel.

This register can be used to set the mode on each. The slide shows the detail of the values

and bits which should be placed in the register in order to program a required mode.

A channel is programmed for a start address and the count of bytes to be transferred

before the transfer can take place. Both these values are placed in various registers

according to the channel number as shown by the slide above. Once the transfer starts

these values start changing. The start address is updated in to the current address and the

count is also updates as bytes are transferred. During the transfer the status of the transfer

can be analyzed by getting the values of these registers listed In the slide above for the

channel(s) involved in the transfer.

File System

File System
•Disk Architecture

•Disk Partitioning

•File systems

Disk Architecture
•Disk is a circular which is hollow from the center

•This shape is inherently useful for random

access.

Tracks are the circular division of the disk and the sectors are the longitudinal division of

the disk

Addressable unit Parameters
• Heads

•Sectors

•Tracks

An addressable unit on disk can be addressed by three parameters i.e. head #, sector # and

track #. The disk rotates and changing sectors and a head can move to and fro changing

tracks. Each addressable unit has a unique combination of sec#, head# and track# as its

physical address.

Blocks
• Blocks are the sectors per track

•Smallest addressable unit in memory

•Address of block is specified as a unique

combination of three parameters (i.e. track, head,

sec)

Density of Magnetic media
• Density of magnetic media is the determinant of

For More Visit

www.VUAnswer.com

the amount of data that can reside stably on the

disk for example floppy disk come with different

densities.
•Double Density

•High Density

Effect of surface area on disk size
• Increasing the surface area clearly increases the

amount of data that can reside on the disk as more

magnetic media no resides on disk but it might

have some drawbacks like increased seek time in

case only one disk platter is being used

Effect of surface area on disk size
• Increasing the surface area clearly increases the

amount of data that can reside on the disk as more

magnetic media no resides on disk but it might

have some drawbacks like increased seek time in

case only one disk platter is being used

Cylinders
• In case of hard disk where there are number of

platters the term track is replaced by cylinder

•Cylinder is a collection of corresponding tracks

if track on platter changes so will the tracks on

rest of the platters as all the heads move

simultaneously

Rotational Delay
• While accessing a selected block the time

required by the disk to rotate to the specified

sector is called rotational delay

Seek Time
• While accessing a selected block Time required

by the head to reach the particular track/cylinder

is called seek time

Access Time
• The accumulative time that is required to access

the selected block is called access time

•Access time includes the delay required by disk

rotation as well as head movement.

Head is like Electric Coil
• Disk follow the basic principle of magnetism of

dynamo.

•When ever a magnetized portion of disk runs

along the coil like head electricity is produced in

the head which is interpreted as a logic 1

•And whenever a demagnetized portion on the

disk runs through the head no electricity is

produced in head which is interpreted as logic 0

Head position and precautions
• The head is touching the surface of floppy disk

which rotates at a low speed of 300 RPM

•The head is not touching the surface of hard disk

which run at high speeds up to 9600 RPM but is

at a few microns distance from the surface

•All the magnetic disk are made out of magnetic

media and hence data may be lost by exposing

them to sunlight, heat, radiation, magnetic or

electric fields.

•Dust is harmful and even fatal in case of head

disk by the virtue of its speed and its distance of

head from the surface

Hard Disk

Reading/Writing a physical Block
• biosdisk(int cmd, int drive, int head, int track,

int sector, int nsects, void * buffer);

Cmd 0 = disk reset

1 = disk status (status of last disk operation)

2 = disk read

3 = disk write

4 = disk verify

5 = disk format

The function

biosdisk() can be used to read or write a physical block. The slide shows its parameter. It

takes the command (cmd), drive number, head number, track number, number of sectors

to be read or written and the memory from where the data is to read from or written to.

Command signifies the operation that is to be performed.

Reading Writing a physical Block
• Drive 0x80 = first fixed disk (physcial drive)

0x81 = second fixed disk

0x82 = third fixed disks

…. ….

0x00 = first removable disk

0x01 = second removable disk

…. ….

Drive number is described in the slide below it starts from 0 for first removable disk and

starts from 0x80 for first fixed disk.

Limitation of biosdisk
• Biosdisk() calls int 13H/0/1/2/3/4/5

•Details of 13H services used by Biosdisk()

•On Entry
AH = service #

For More Visit

www.VUAnswer.com

For More Visit

www.VUAnswer.com

AL=No. of sectors

BX = offset address of data buffer

CH = track #

CL = sector #

DH = head/side #

DL = Drive #

ES = Segment Address of buffer.

However there are some limitation of this biosdisk() while using large disks. This

function uses the int 13H services listed in the slide above.

Limitation of biosdisk()
• Large sized disk are available now with

thousands of tracks

•But this BIOS routine only is capable of

accessing a max. of 1024 tracks.

•Hence if a large disk is being used not whole of

the disk can be accessed using this routine.

The parameter sizes provided by these services may not be sufficient to hold the track

number of block to be accessed.

Extended BIOS functions
• Extended BIOS functions of int 13h can be used

for operations on higher tracks

•As discussed later usual BIOS functions can

access a maximum of 504MB of disk approx.

Highest biosdisk() capacity
• Hence the highest capacity of disk can be

accessed using bios functions is

•63x16x1024x512= 504 MB approx.

But IDE disk interface can support disks with memory space larger than 504MB

Highest IDE capacity
• Hence highest physical capacity of the disk

according to the IDE interface is

255x16x65536x512 = 127GB

•Extended BIOS functions allow to access disk

with sizes greater than 504 MB through LBA

translation.

Extended services require that the address of the block is specified as a LBA address.

LBA Translation Method
• Each unique combination of three parameters is

assigned a unique index as shown below

•Firstly all the sectors of a cylinder are indexed

for head=0, then when whole track has been

indexed the sector in the track of same cylinder

with head =1 are indexed and so on up till the end

of all heads

When done with one cylinder the same is repeated

for the next cylinder till the end of cylinders

For More Visit

www.VUAnswer.com

LBA translation is done by numbering the blocks with a single index. The indexes are

assigned to blocks as shown in the slide below. In terms of the disk geometry firstly all

the sectors of a track will be indexed sequentially, then the track exhausts the next track is

chosen on the other side of the disk and so on all the tracks in a cylinder are indexed.

When all the blocks within a cylinder has been indexed the same is done with the next

cylinder.

if the CHS (cylinder, head , sector) address of a disk is known it can be translated in to

the LBA address and vice versa. For this purpose the total number of cylinders, heads and

sectors must also be known.

Also conversely LBA to CHS translation can also be done using the formulae discussed

in the following slide but for this the total number of cylinders, heads and sectors within

the disk geometry should be known

Disk Address Packet is a data structure used by extended int 13H services to address a

block and other information for accessing the block. Its structure is defined in the slide

below.

For More Visit

www.VUAnswer.com

Hard Disk, Partition Table

Extended Read
• Service used for extended read is int 13h/42h

On Entry
AH=42H

DL=drive #

DS:SI= far address of Disk address packet

On Exit
If CF=0

AH=0= Success

If CF=1

AH= Error code

Interrupt 13H/42H can be used to read a LBA addressed block whose LBA address is

placed in the Disk Address packet as described in the slide above.

Extended Write
• Service used for extended write is int 13h/43h

On Entry
AH=43H

AL=0,1 write with verify off

2 write with verify on

DL=drive #

DS:SI= far address of Disk address packet

On Exit
If CF=0

AH=0= Success

If CF=1

AH= Error code

Similarly int 13H / 43H can be used to write onto to LBA addressed block as described in

the slide above.

The above slides list a program that that performs a block read operation using the

interrupt 13H/42H. A structure of type DAP is create an appropriate values are placed

into it which includes its LBA address. The offset address of dap is placed in SI register

and the DS already contains its segment address as it has been declared a global variable.

The drive number is also specified and the interrupt is invoked. The interrupt service

reads the contents of the block and places it in a buffer whose address was specified in

dap.

Disk Partitioning
• Partition Table contains information pertaining

to disk partitions.

• Partition Table is the first physical sector
Head = 0
Track/Cylinder = 0
Sec = 1 or LBA = 0
• Partition Table at CHS = 001 is also called MBR
(Master Boot Record).

Structure of Partitioning Table
• Total size of Partition Table is 512 bytes.

For More Visit

www.VUAnswer.com

• First 446 bytes contains code which loads the

boot block of active partition and is executed at

Boot Time.

• Rest of the 66 bytes is the Data part.

• Last two bytes of the Data part is the Partition

table signature.

File System for Each O.S.
• On a single disk there can be 4 different file

systems and hence 4 different O.S.

• Each O.S. will have its individual partition on

disk.

• Data related to each partition is stored in a 16-

bytes chunk within the Data Part of Partition

Table.

Structure of Data Part of P.T.

The data part can contain information about four different partitions for different

Operating systems. Each partition information chunk is 16 bytes long and the last two

bytes at the end of the partition table data part is the partition table signature whose value

should be AA55 indicating that the code part contains valid executable code.

Primary Partition
• Partition defined in the MBR (Master Boot

Record) are primary partition.

• Each Primary Partition contains information

about its respective O.S.

• However if only one O.S. is to be installed then

extended partitions.

Extended Partitions

However if a single operating system is to be kept for instance, then the disk can be

divided into primary and extended partitions. Information about primary and extended

partition is kept in the first physical block. The extended partition may again be divided

into a number of partitions, information about further partitions will be kept in extended

partition table which will be the first physical block within extended partition (i.e. it will

not the first block of primary partition.). Moreover there can be extended partitions within

extended partitions and such that in then end there are number of logical partitions this

can go on till the last drive number in DOS.

Partition Table II

Here it can be seen that the first partition table maintains information about the primary

and extended partitions. The second partition table similarly stores information about a

logical and a extended partition within the previous extended partition. Similarly for each

such extended partition there will be a partition table that stores information about the

logical partition and may also contain information about any further extended partition. In

this way the partition tables form a chain as depicted in the slide below. The last partition

table within the chain contains just a single entry signifying the logical drive.

For More Visit

www.VUAnswer.com

Reading Extended Partition

Above is a listing of a simple program that reads the partition table using the extended

13H services. It then displays the contents of the data part of the partition table read. For

this purpose it uses various data structures designed in reflection of the partition table and

16 bytes data entries within. The program uses recursion and calls the getpart() function

recursively whenever it finds an extended partition to read the data within the extended

partition table.

Get Drive Parameters
On Entry:
AH – 48
DL – Drive number
DS:SI – Address of result buffer
On Exit:
Carry Clear
AH – 0
DS:SI – result buffer
Carry Set
AH – Error Code

The partition table data entry also stores the CHS address of the starting block. But this

address is left insignificant if a LBA enable disk is in question. However LBA address

can be used in place of the CHS address, and in case CHS address is required it can be

calculated if the total number of tracks, sectors and heads are known. To get the total

number of tracks, sectors and head the above described service can be used.

File System Data Structures (LSN, BPB)

For More Visit

www.VUAnswer.com

LSN (Logical Sector Number)

Boot Block has LSN = 0
• If the blocks are indexed from the boot block such
that the boot block has index = 0,Then this index is
called LSN.
• LSN is relative index from the start of logical drive,
not the physical drive.
For fixed disk
Hidden Blocks =
No. of Sec/Track

LSN is also indexed like LBA the only difference is that LBA is the address relative to

the start of physical drive (i.e. absolute), whereas LSN address is the address from the

start of logical partition i.e relative.

As in the above example it can be noticed that the LBA = 0 is not the same as LSN=0.

The LBA=0 block is the first block on disk. Whereas each logical partition has LSN=0

block which is the first block in logical drive and is not necessarily the first block on

physical drive. Also notice the hidden blocks between the first physical block on each

partition and its first LSN block. These hidden blocks are not used by the operating

system for storing any kind of data.

Conclusion
• LBA is physical or absolute address.
• LSN is relative address with respect to the start of
Logical Drive.

File System Data Structures
• BIOS Parameter Block (BPB)
• Drive Parameter Block (DPB)
• File Control Block (FCB)
• FAT 12, FAT 16, FAT 32
• Master File Table (MFT)

To understand the file systems of DOS and Windows the above given data structure

should be understood which are used by the operating system for file management.

Anatomy of a FAT based file system

Starting block(s) is /are

the boot block(s), immediately after which the FAT (File allocation table) starts. A typical

volume will contain two copies of FAT. After FAT the root directory is situated which

contain information about the files and folders in the root directory. Whole of this area

constitutes the systems area rest of the area is used to store user data and folders

For More Visit

www.VUAnswer.com

Clusters
• A cluster is a collection of contiguous blocks.
• User Data is divided into clusters
• Number of blocks within a cluster is in power of 2.
• Cluster size can vary depending upon the size of
the disk.
• DOS has a built in limit of 128 blocks per cluster.
• But practically limit of 64 blocks per cluster has
been established.
• We will learn more about the size of clusters, later.

BPB (BIOS Parameter Block)
• Situated within the Boot Block.
• Contains vital information about the file system.

BIOS parameter block is a data structure maintained by DOS in the boot block for each

drive. The boot block is typically a 512 byte block which as seen the previous slides is the

first logical block i.e. LSN = 0. It contains some code and data. The data part constitutes

the BPB.

File System Data Structures II (Boot block)

The LSN of the boot block is 0. The information contained within the BPB in boot block

can be used to calculate the LSN of the block from where the user data starts. It can be

simply calculated by adding the number of reserved sector, sectors occupied by FAT

copies * number of FAT copies and the the number of blocks reserved for root dir.

Inside a Boot Block
• Contains Code and Data
jmp codepart
OSName
BIOS
Parameter Block
codepart:
• Boot Block executes at Booting time.

Besides the LBA address a LSN address can also be used to address a block. If the LSN

address is known the absread() function can be used to read a block and abswrite() can be

used to write on it as described in the slide below where nsect is the number of sector to

be read/written.

Reading/ Writing a Block
• absread()
is used to read a block given its LSN
• abswrite()
is used to write a block given its LSN
absread(int drive, int nsects, long lsec, void *buffer);
abswrite(int drive, int nsects, long lsec, void *buffer);

File System Data Structures III (DPB)
Besides the BPB another data structure can be used equivalently called the DPB (Drive

parameter block). The operating system translates the information in BPB on disk into the

DPB which is maintained main memory. This data structure can be accessed using the

undocumented service 21H/32H. Its detail is shown in the slide below.

The DPB contains the information shown in the table below. This information can be

derived from the BPB but is placed in memory in the form of DPB.

For More Visit

www.VUAnswer.com

Root Directory, FAT12 File System

The DOS directory structure is a Tree like structure. The top most level of the tree being

the root directory. The root directory contains files and folders. Each folder can contains

more files and folders and so on it continues recursively.

File
• Is logically viewed as an organization of Data.
• Physically it can be a collection of clusters or
blocks.
• O.S. needs to maintain information about the
cluster numbers of which a file may be comprised
of.

Control information about files are maintained in a data structure called the File control

block (FCB). The FCB for each file is created and stored in the disk.

The root directory consists of FCBs for all the files and folders stored on the root

directory. To obtain these FCBs, the portion on disk reserved for root directory can be

read.

In the above two slides first the contents of DPB are read to find the start of the root

directory. Using this block number the contents of root directory are read, as it can be

seen they contain number of FCBs each containing information about a file within the

directory.

The user data area is divided into clusters. The first cluster in user data area is numbered 2

in a FAT based systems. A cluster is not the same as block and also there are no system

calls available which use the cluster number. All the system calls use the LSN address. If

the cluster number is known it should be converted into LSN to access the blocks within

the cluster. Moreover all the information about file management uses the cluster number rather than

the LSN for simplicity and for the purpose of managing large disk space. So

here we devise a formula to convert the cluster number into LSN.

FAT12 File System II, FAT16 File System

The root directory contains a collection of FCBs. The FCB for the file in question is

searched from where the first cluster of the file can be get.

After calculating the sector number for the cluster the contents of the file can be accessed

by reading all the blocks within the cluster. In this way only the starting cluster will be

read. If the file contains a number of cluster the subsequent clusters numbers within the

file chain can be accessed from the FAT.

Larger File Contents
• Larger files would be comprised of numerous
clusters.
• The first Cluster # can be read from FCB for rest
of the Cluster, a chain is maintained within the FAT.

FAT12
• FAT is a simple table which contains cluster
number of each file.
• FAT12 will have 12-bit wide entries and can have
2^12 entries maximum.
• Although some of these entries may be reserved.

Above slides show how a cluster chain for a file is maintained in the FAT. The first

cluster number is in the FCB. Subsequent clusters will be accessed from the FAT using

the previous cluster number as index to look up into the FAT for the next cluster number.

A FAT theoretically will contain 2n entries where n is 12 for FAT 12 and 16 for FAT16.

But all the entries are not used some of the entries are reserved following slide shows its

detail.

Unused FAT Entries
• Reserved Entries = FF0H ~ FF6H
• EOF value = FF7H ~ FFFH
• First Two Clusters = 0,1
• Free Cluster = 0
• Max. range of Cluster # = 2 ~ FEFH
• Total # of Clusters of FAT12 = FEEH

There can various volume with various sizes with FAT12 or FAT16. The number of

entries for FAT 12 or FAT16 are limited then the question arises how can a certain

volume with moderate space and another volume with large space can be managed by the

same FAT system. The answer is that the number of entries might be same but the size of

cluster may be different. The cluster size can vary from 512 bytes to 32K in powers of 2

depending upon the volume size.

FAT12 File System (Selecting a 12-bit entry within
FAT12 System)

For More Visit

www.VUAnswer.com

There is no primitive data type of 12 bits. But the entries in 12 bit FAT are 12 bits wide.

Three consecutive bytes in FAT 12 will contain two entries.

File Organization

Deleted Files
• 0xE5 at the start of file entry is used to mark the
file as deleted.
• The contents of file still remain on disk.
• The contents can be recovered by placing a valid
file name, character in place of E5 and then
recovering the chain of file in FAT.
• If somehow the clusters used by deleted file has
been overwritten by some other file, it cannot be
recovered.

FAT32 File System

Let’s now perform few more experiments to see how long file names are managed.

Windows can have long file names up to 255 characters. For This purpose a file is created

with a long file name

Long FileName
Volume in drive H is NEW VOLUME
Volume Serial Number is 8033-3F79

I n the above slide it can be noticed that the long file name is also stored with the FCBs.

Also the fragments of Unicode strings in the long file name forms a chain. The first byte

in the chain will be 0x01, the first byte of the next fragment will be 0x02 and so on till the

last fragment. If the last fragment is the nth fragment starting from 0 such that n is

between 0 and 25 the first byte of the last fragment will be given as ASCII of ‘A’ plus n.

Now lets move our discussion to FAT32. In theory the major difference between FAT 16

and FAT 32 is of course the FAT size. FAT32 evidently will contain more entries and can

hence manage a very large disk whereas FAT16 can manage a space of 2 GB maximum

practically.

Following slide shows the structure of the BPB for FAT32. Clearly there would be some

additional information required in FAT32 so the structure for BPB used in FAT32 is

different.

Fat32 BPB Structure

For More Visit

www.VUAnswer.com

There can be different volumes with different volume sizes. The device driver for file

handling would require knowing the FAT size. The following slide illustrates an

algorithm that can be used to determine the FAT size in use after reading the BPB.

FAT32 File System II

Fat32 Entry
• Each entry is of 32-bits size but only

lower 28-bits are used.

• Higher 4-bits are not tempered.

• While reading higher 4-bits are

ignored.

• While writing higher 4-bits are not

changed.

Anatomy of FAT32 based system differs from FAT16 based systems significantly as

explained by the slide below.

Fat32 File System

Reserved Blocks

• No fixed space reserved for root

For More Visit

www.VUAnswer.com

directory.

• FCB of root directory are saved in a

cluster and the cluster # for root directory

is saved in BPB as discussed earlier.

In reflection of the anatomy of FAT32 based system the method used to translate the

cluster # into LSN also varies. The following formula is used for this purpose.

Starting Sector # for a Cluster
Starting Sector = Reserved Sect. + FatSize *
FatCopies + (cluster # - 2) *
size of cluster

In the FAT32 there is another special reserved block called FSInfo sector. The block

contains some information required by the operating system while cluster

allocation/deallocation to files. This information is also critical for FAT16 based systems.

But in FAT12 and 16 this information is calculated when ever required. This calculation

at the time of allocation is not feasible in FAT32 as the size of FAT32 is very large and

such calculations will consume a lots of time, so to save time this information is stored in

the FSInfo block and is updated at the time of allocation/deallocation.

New Technology File System (NTFS)

The following slide shows the anatomy of an NTFS based system. The FAT and root

directory has been replaced by the MFT. It will generally have two copies the other copy

will be a mirror image of the original. Rests of the blocks are reserved for user data. In the

middle of the volume is a copy of the first 16 MTF record which are very important to the

system.

The first 16 entries of the MFT are reserved. Rests of the entries are used for user files.

There is an entry for each file in the MFT. There can be difference in the way a file is

managed depending upon the size of the file.

For More Visit

www.VUAnswer.com

For NTFS simply the following formula will be used to translate the sector number into

cluster number.

Determining the Sector # from
Cluster #

Sector # = Cluster # * Sector Per Cluster

The following slides explain how the NTFS volume can be accessed in DOS. Normally it

can not be accessed if the system has booted in DOS as the DOS device drivers do not

understand NTFS.7

Accessing NTFS volume in DOS
• NTFS volume can not be accessed in DOS

using DOS based function like absread()

etc.

• DOS device drivers does not understand

the NTFS data structures like MFT etc.

• If NTFS volume is accessed in DOS, it will

fire the error of Invalid Media.

How to Access NTFS volume using
BIOS Functions
• If the system has booted in DOS then a

NTFS volume can be accessed by an Indirect

Method, using BIOS functions..

• This technique makes use of physical

addresses.

• Sector can be accessed by converting their

LSN into LBA address and then using the

LBA address in extended BIOS functions to

access the disk sectors.
The above program uses the DPB to reach the clusters of a file. The getDPB() function

gets the far address of the DPB. Using this address the drive parameters are used to

determine the location of FAT and root directory. The file is firstly searched in the root

directory through sequential search. If the file name and extension is found the first

cluster number is used to look up into the FAT for subsequent clusters. The particular

block containing the next cluster within the FAT is loaded and the entry is read, similarly

the whole chain is traversed till the end of file is encountered.

Disk Utilities
Format

• Low Level Format

-- sets the block size.

-- sets the Initial values in the block.

-- indexes the block for optimal usage.

-- can be accomplished using BIOS

routines for small disks or extended

BIOS services for larger disks.

• Quick Format

-- initializes the data structures for file

management.

-- initializes and sets the size of FAT, root

directory etc, according to the drive size.

-- initializes the data in boot block and

places appropriate boot strap code for

the boot block.

Disk Partitioning Software
•Write the code part of partition table to

appropriately load the Boot Block of active

partition in primary partition table.

• Places data in the partition table regarding

primary and extended partitions.

• As per specification of the user assigns a

appropriate size to primary and extended

partition by modifying their data part.

Scan Disk
Surface Scan for Bad Sectors
• It attempts to write a block.

• After write it reads back the block contents.

• Performs the CRC test on data read back.

• If there is an error then the data on that block

is not stable the cluster of that block should be

marked bad.

• The cluster is marked bad by placing the

appropriate code for bad cluster so that they

may not be allocated to any file.

Lost Chains
• The disk scanning software may also look

for lost chains.

• Lost chains are chains in FAT which

apparently don’t belong to any file.

• They may occur due to some error in the

system like power failure during deletion

process.

Looking for Lost Chains
• For each file entry in the directory structure

its chain in FAT is traversed.

• All the cluster in the file are marked.

• When done with all the files and folders, if

some non-zero and non-reserved clusters are

left then they belong to some lost chains.

• The lost chains are firstly discretely

identified and then each chain can either be

restored to newly named files or can be

deleted.

Cross References
• If a cluster lie in more than one file

chain, then its said to be Cross

Referenced.

• Cross references can pose great

problems.

• Cross references can be detected easily

by traversing through the chain of all files

and marking the cluster # during traversal.

• If a cluster is referenced more than once

then it indicates a cross reference.

• To solve the problem only one reference

should be maintained.

For More Visit

www.VUAnswer.com

Defragmenter • Disk fragmentation is unwanted.

• Fragmentation means that clusters of a same file are not

contiguously placed, rather they are far apart, increasing seek

time hence access time.

• So its desirable that files clusters may be placed contiguously,

this can be done by compaction or defragme ntation.

• Defragmentation Software reserves space for each file in

contiguous block by moving the data in clusters and

readjusting.

• As a result of defragmentation the FAT entries will change

and data will move from one cluster to other localized cluster to

reduce seek time.

• Defragmentation has high computation cost and thus cannot

be performe d frequently.

File Restoration • FAT structure provides the possibility of recovering a file

after deletion, if its clusters were contiguous and have not been

over-written.

• DOS perform file deletion by placing 0xE5 at the first byte of

it FCB entry and placing 0’s (meaning available) in the entries

for the file clusters in the FAT.

• Two task should be performed successfully to undelete a file

-- Replacing the 0xE5 entry in FCB by a valid file name

character.

-- placing the appropriate values in FAT for

representation of file cluster chain.

• If any one of the above cannot be done then the file cannot be

fully recovered.

Memory Management

Memory Management
• Understanding of the data structures and

techniques used for memory management.

• Study of the overall memory areas used by

operating system and applications.
The following slide shows the memory map of the first 1MB of RAM. The first 640KB is

called conventional RAM and the higher 384KB is called system memory. Some of the

memory areas are reserved for special purposes as described by the slide rest is user area

where user application can reside.

In higher processors, the main memory may be greater than 1MB. In this slide it shows

that the memory portion higher than 1MB is called extended memory and some unused

portion in system memory is called the expanded memory.

Expanded Memory
• also called EMS

• can be accessed using a driver called EMM386.EXE

• this driver allows the use of unused memory within

system memory.

Extended Memory
• also called XMS

• can be accessed by installing the driver HIMEM.SYS

• this driver enable the extended memory by shifting from

Real to Protected Mode.

Dual Modes in Higher PCs
Higher PCs can operate in two modes

• REAL MODE

For More Visit

www.VUAnswer.com

• PROTECTED MODE

Real Mode
• PCs initially boots up in Real Mode. It may be shifted to

protected mode during the booting process using drivers

like HIMEM.SYS

• Only first 1 MB of RAM can be accessed in Real Mode.

• The Real Mode address is a 20-bit address, stored and

represented in the form of Segment : Offset

• OS like DOS has a memory management system in

reflection of the Real Mode.

Protected Mode
• PC has to be shifted to Protected Mode if originally

boots in Real Mode.

• In Protected Mode whole of the RAM is accessible that

includes the Conventional, Expanded and Extended

Memories.

• OS like Windows has a memory management system

for Protected Mode.

• A privilege level can be assigned to a memory area

restricting its access.

Memory Management in DOS
• DOS uses the conventional memory first 640 KB for its

memory management.

• Additional 64 KB can be utilized by installing

EMM386.EXE and additional 64 KB in the start of

extended memory by installing HIMEM.SYS

• Smallest allocatable unit in DOS is a Paragraph, not a

Byte.

Paragraph
• Whenever memory is to be allocated DOS allocates memory in form of

Paragraph.

• A Paragraph can be understood from the following example

consider two Physical Addresses

1234 H : 0000 H

1235 H : 0000 H

• Note there is a difference of 1 between the Segment address.

• Now lets calculate the Physical address

12340 H

12350 H

Difference = 10 H

• A difference of 1 H in Segment address cause a difference of 10 H in Physical

address.

• DOS loader assign a segment address whenever memory area is allocated,

hence a change of 1 in Segment address will impart a difference of 16 D | 10 H

in physical address.

Data Structures for Memory
Management
• DOS makes use of various Data Structures for Memory

Management:

• MCB (Memory Control Block)

• EB (Environment Block)

• PSP (Program Segment Prefix)

For More Visit

www.VUAnswer.com

Environment Block
• Contains Environment information like Environment

variables and file paths for that program

PSP
• is situated before the start of a process.

• contains control information like DTA (Disk Transfer

Area) and command line parameters.

The following slide shows that two MCBs are allocated for each program typically. The

first MCB controls the Environment Block the next MCB controls the PSP and the

program. If this is the last program in memory then the MCB after the program has ‘Z’ in

its first byte indicating that it is the last MCB in the chain.

All the MCB forms a chain. If the address of first MCB is known the segment
address of next MCB can be determined by adding the number of paragraph
controlled by MCB + ! into the segment address of the MCB. Same is true for all
MCBs and hence the whole chain can be traversed.

How to Access the Start of Chain
• An documented service can be used to obtain the

address of the first MCB.

• Service 21H/52H is used for this purpose.

• This service returns

The address of DOS internal data structures in ES : BX

• 4-bytes behind the address returned lies the far address

of the first MCB in memory.

• Using this address and hence traversing through the

chain of MCBs using the information within MCBs.

The above slide shows how service 21H/52H is used to get the address of first MCB in

memory.

In the following slide the dump of the first MCB is taken. ‘M’ in the first byte at the

location read indicates the placement of MCB at this location. The address of next MCB

can be calculated by adding the number of paragraphs controlled by MCB + 1 into the

segment address. Using this method all the MCBs in memory are traversed till the last

MCB with first byte ‘Z’ is encountered.

Non-Contiguous memory allocation

Non-Contiguous Allocation
• Earlier Operating System like DOS has contiguous memory

management system i.e. a program cannot be loaded in memory if a

contiguous block of memory is not available to accommodate it.

• 80286 and higher processors support non-contiguous allocation.

• 80286 support Segmentation in Protected Mode, i.e. a process is

subdivided into segment of variable size and each segment or few

segments of the process can be placed anywhere in memory

• 80386 and higher processors also support Paging, i.e. a Process

may be divided into fixed size Pages and then only few pages may

be loaded any where in memory for Process Execution.

• The key to such non-contiguous allocation systems is the

addressing technique.

Address Translation
• In Protected Mode the direct method of

seg * 10H + offset for Logical to Physical

address translation is discarded and an

indirect method is adopted.

Selectors
• In Protected Mode the Segment Registers are used as

Selector.

• As the name suggest they are used to select a descriptor

entry from some Descriptor Table.

Descriptor
• A Descriptor describes a Memory Segment by storing attributes

related to a Memory Segment.

• Significant attributes of a Memory Segment can be its base

(starting) address, it length or limit and its access rights.

Descriptor Table
• GDT: Global Descriptor Table

• LDT: Local Descriptor Table

• IDT: Interrupt Descriptor Table

• GDT and LDT can have up to 8192 entries, each of 8-

bytes width.

• IDT can have up to 256 entries

Address translation in Protected mode

Selector
• A Selector is called a Selector because it acts as an

index into the Descriptor Table to select a GDT or LDT

entry.

Address Translation in
Protected Mode
• All the tables are maintained in Main Memory.

• Segment Registers are used as Selectors.

• The Descriptor Entry selected from the Descriptor Table

is placed in a hidden cache to optimize address

translation.

Address Translation in
Protected Mode
•Whenever a Selector is assigned a new value, the hardware looks up into the

Descriptor Table and loads the Base Address, Limit and Access Rights into the

hidden cache.

•Whenever an instruction is issued the address referred is translating into Physical

address using the effective Offset within the instruction and the Base Address in the

corresponding Segment Cache, e.g.

movAX, [1234H]

effective offset = 1234H

base = base within the cache of DS

abs. address = base +1234H

Or in instruction

movDL, [EBP] For More Visit

www.VUAnswer.com

effective offset address = EBP

base address = base address in cache of SS register

abs. address = base address + EBP

• Hence the absolute address cannot be calculated directly from the Segment address

value.

Control Register
• 80386 and above have 4 Control Registers CR0 ~ CR3.

• These Control Registers are used for conveying certain

control information for Protected Mode Addressing and

Co-Processors.

• Here we will illustrate only the least significant bit of

CR0.

• The least significant bit of CR0 is PE-bit which can be

set to enable Protected Mode Addressing and can be

cleared to enter Real Mode.

Moving to Protected Mode
• Protected Mode can be entered by setting the PE bit of CR0, but

before this some other initialization must be done. The following

steps accomplish the switching from Real to Protected Mode

correctly.
1. Initialize the Interrupt Descriptor Table, so it contains valid Interrupt

gates for at least the first 32 Interrupt type numbers. The IDT may

contain up to 256, 8-byte interrupt gates defining all 256 interrupt
types.

2. Initialize the GDT, so it contains a NULL Descriptor, at Descriptor 0

and valid Descriptor for at least one Data and one Stack.
3. Switch to Protected by setting the PE-bit in CR0.

4. Perform a IntraSegment (near) JMP to flush the Internal Pre-fetch

Queue.
5. Load all the Data Selectors (Segment Registers) with their initial

Selectors Values.

6. The 80386 is now in Protected Mode.

Viruses
• Viruses are special program having ability to embed

themselves in a system resources and there on propagate

themselves.

State of Viruses
• Dormant State: A Virus in dormant state has

embedded itself within and is observing system activities.

• Activation State: A Virus when activated would

typically perform some unwanted tasks causing data loss.

This state may triggered as result of some event.

• Infection State: A Virus is triggered into this

state typically as a result of some disk operation. In this

state, the Virus will infect some media or file in order to

propagate itself.

Viruses

Types of Viruses
• Partition Table Virus

• Boot Sector Virus

• File Viruses

How Partition Table Virus Works
• The Partition Table Code is executed at boot time to choose the Active Partition.

• Partition Table Viruses embed themselves in the Partition Table of the disk.

• If the Virus Code is large and cannot be accommodated in the Code Part of 512-

bytes Partition Table block then it may also use other Physically Addressed Blocks

to reside itself.

• Hence at Boot time when Partition Table is to be executed to select the Active

Partition, the virus executes. The Virus when executed loads itself in the Memory,

where it can not be reached by the OS and then executes the original Partition Table

Code (stored in some other blocks after infection) so that the system may be booted

properly.

•When the system boots the Virus will be resident in memory and will typically

intercept 13H (the disk interrupt).

•Whenever a disk operation occurs int 13H occurs. The Virus on occurrence of 13H

checks if removable media has been accessed through int 13H. If so then it will copy

its code properly to the disk first Physical Block (and other blocks depending upon

size of Virus Code). The removable disk is now infected.

• If the disk is now removed and is then used in some other system, the Hard Drive

of this system will not be infected unless the system is booted from this disk. Because

only on booting from this removable disk its first physical block will get the chance

to be executed.

How Partition Table Virus Loads
itself
• The transient part of Command.Com loads itself such that its

last byte is loaded in the last byte of Conventional Memory. If

somehow there is some Memory beyond Command.Com’s

transient part it will not be accessible by DOS.

• At 40:13H a word contains the amount of KBs in

Conventional Memory which is typically 640.

• If the value at 40:13H is somehow reduced to 638 the

transient part of Command.Com will load itself such that its

last byte is loaded at the last byte of 638KB mark in

Conventional RAM.

• In this way last 2KB will be left unused by DOS. This

amount of memory is used by the Virus according to its own

size.

How Boot Sector Virus Works
• Boot Sector also works in almost the same pattern, the

only difference is that it will embed itself within the Boot

Block Code.

File Viruses
• Various Viruses embeds themselves in different

executable files.

• Theoretically any file that can contain any executable

code, a Virus can be embedded into it. i.e. .COM, .EXE

are executable files so Viruses can be embedded into

them, Plain Text Files, Plain Bitmap Files are pure data

and cannot be executed so Viruses cannot be actively

embedded into them, and even if they are somehow

embedded they will never get a chance to execute itself.

COM File
• COM File is a mirror image of the program code. Its

image on disk is as it is loaded into the memory.

• COM Files are single segment files in which both Code

and Data resides.

• COM File will typically have a Three Bytes Near Jump

Instruction as the first instruction in program which will

transfer the execution to the Code Part of the Program.

How COM File Virus Infects
Files
• A COM File Virus if resident may infect COM Files on

execution.

• Typically COM File Virus will Interrupt 21H Service

4B. This Service is used to load a Program.

• Whenever a Program is to be Loaded int 21H Service #

4BH is used to Load a Program. The Virus if resident will

check the parameters of this Service to get the file path. If

the File is .COM File then the Virus appends itself to the

For More Visit

www.VUAnswer.com

file and tempers with the first 3-bytes of .COM File so

that the execution branches to the Virus Code when the

program is executed.

How COM Virus Loads Itself
• When a file is Loaded in Memory it will occupy a number of

Paragraphs controlled by some MCB.

• If the file is infected the Virus is also loaded within the Memory

Area allocated to the Program.

• In this case the Virus does not exist as an Independent Program as

it does not have its own PSP. If the Program is terminated the Virus

Code will also be unloaded with the program. The Virus will try to

attain an Independent Status for which it needs to relocate itself and

create its own PSP and MCB in Memory.

• When the program runs the Virus Code executes first. The Virus

creates an MCB, defines a new PSP initializes the PSP and

relocates itself, updates the last MCB, so that it can exist as an

Individual Program, and then transfers the execution back to the

Original Program Code.

• Now if the Original Program Terminates the Virus will still

remain resident.

EXE File Viruses
• The EXE File Viruses also works the same way in

relocating themselves.

• The main difference in COM File and DOS EXE File is

that the COM File starts its execution from the first

instruction, whereas the entry point of execution in EXE

File can be anywhere in the Program.

• The entry point in case of EXE File is tempered by the

Virus which is stored in a 27-byte header in EXE File.

Detection
• Viruses can be detected by searching for their Signature

in Memory or Executable Files.

• Signature is a binary subset of Virus Code. It is a part of

Virus Code that is unique for that particular Virus only

and hence can be used to identify the Virus

• Signature for a Virus is selected by choosing a unique

part of its Code. To find a Virus this Code should be

searched in memory and in files. If a match is found then

the system is infected.

Removal
Partition Table & Boot Sector Viruses
• Partition Table and Boot Sector Viruses can be removed

by re-writing the Partition Table or Boot Sector Code.

• If the Virus is resident it may exhibit stealth i.e. prevent

other programs from writing on Partition Table or Boot

Sector by intercepting int 13H

• In case it’s a stealth Virus the system should be booted

from a clean disk will not give the Virus any chance to

execute or load itself.

File Viruses
• If the Virus size is known Viruses can be removed easily from file.

• Firstly, the original value of first 3-bytes in case of COM File or the entry

point in case of EXE should be restored.

• The appended portion of Virus can be removed by coping the contents of

original file into a temporary file.

•The Virus Code is not copied.

• The original file is then deleted and the temporary file is renamed as the

original file.

For More Visit

www.VUAnswer.com

