For More Visit

www.VUAnswer.com

DMA Controller

DMA is a device which can acquire complete control of the buses and hence can be used
to transfer data directly from port to memory or vice versa. Transferring data like this can
prove faster because a transfer will consume 2 bus cycles if it is performed using the
processor. So in this approach the processor is bypasses and its cycles are stolen and are
used by the DMA controller.

Direct Memory Access (DMA)

The latch B of the DMA interface is used to hold the higher 4 or 8 bits of the 20 or 24 bit
absolute address respectively. The lower 16bits are loaded in the base address register and
the number of bytes to be loaded are placed in the count register. The DMA requests to
acquire buses through the HOLD signal, it receives a HLDA (Hold Acknowledge) signal
if no higher priority signal is available. On acknowledgment the DMA acquires control of
the buses and can issue signals for read and write operations to memory and 1/O ports
simultaneously. The DREQ signals are used by various devices to request a DMA
operation. And if the DMA controller is successful in acquiring the bus it sends back the
DACK signal to signify that the request is being serviced. For the request to be serviced
properly the DMA channel must the programmed accurately before the request.

A single DMA can transfer 8bit operands to and from memory in a single a bus cycle. If
16bit values are to be transmitted then two DMA controllers are required and should be

Cascaded

DMA Programming Model

* DMA has 4 — Channels

* Each Channel can be programmed to transfer a
block of maximum size of 64k.

* For each Channel there is a

* Base Register
» Count Register
« Higher Address Nibble/Byte is placed in Latch B.

* The Mode register is conveyed which Channel is
to be programmed and for what purpose i.e. Read
Cycle, Write Cycle, Memory to memory transfer.
* A request to DMA is made to start it’s transfer.

Internal Registers
* No of 16 & 8 bit Internal registers
+ Total of 27 internal registers in DMA

Register Number Width
Starting Address 16
Counter

Current Addre ss
Current Counter
Temporary Address

16
16
16
16
Temporary Counter 16
Status

Command
Intermediate Memory
Mode

Mask

Request

i e kX Y

@ o0 e

For More Visit

www.VUAnswer.com

DMA Modes
 Block Transfer

* Single Transfer

* Demand Transfer

In block transfer mode the DMA is

programmed to transfer a block and does not pause or halt until the whole block is
transferred irrespective of the requests received meanwhile.

In Single transfer mode the DMA transfers a single byte on each request and updates the
counter registers on each transfer and the registers need not be programmed again. On the
next request the DMA will again transfer a single byte beginning from the location it last
ended.

Demand transfer is same as block transfer, only difference is that the DREQ signal
remains active throughout the transfer and as soon as the signal deactivates the transfer
stops and on reactivation of the DREQ signal the transfer may start from the point it left.

Programming the DMA controller

The following table shows the different DMA controller registers which are used to determing the status of the controller or
define the parameters:

i DMA register in the PC/XT (o AT) that directs the DMA controller

Register Por' Port™ Read Write
Stalis oen | ooon [|
Conmand o8h | opon [x|
Request oon | ooz

Masking 104h | ooan

Mode ogh | opén
ByteWord-FlgFlop och | opsn

Intemeciate memory ooh | ooan |

Resit ooh | DA

Masking reset OEh | ODCh

Masking oFn | oDEn

[*siave in an AT/ only one DMA ina PC/XT
l“ﬂ'ﬂﬂ!fh!ﬂl'l'fl’dmhlm

Before you access one of these registers, decide if you're addressing the master or the shave. Ifvou have a PCXT that has
only ane DMA controller, it's not possible to access a second DMA controller (master in the AT),

The eommand repister 1 located at the <ame port address as the stams reeister. It poes throngh several settings on the DA
coniraller. Same of these settings, especially the 5 bt are interesting in certam siteations for DAMA prosramming nsing
software. The prohlem with this repister, however, is that it cannot be selected and nsed due to the status of the other hits

Terminal count if reached signifies that the whole of the block as requested through some
DMA channel has been transferred.

This is the command register. It is used to program various common parameters of
transfer for all the channels.

DMA Request Register

The request register is used (o initiate a DMA transfer under software control. This is done by simulating the activation or
clearing ofone of the DREQx lines The request register 15 also used to initiale a memory to memory iransfer, since a penpheral
device 15 not involved and therefore cannot send a signal over a DREQX line

This register can be used to simulate a DMA request through software (in case of memory
to memory transfer). The lower 2 bits contains the channel number to be requested and
the bit # 2 is set to indicate a request.

DMA Mask—1 Register
0|0(010/0 register at the 0Ah, or 0D4h, port

L—'[—-P Binary channe! number (0-3)

— P Masking bit
0= no masking
1 = ignor= DMA raquests on this channgl

Another way to mask or make a channel receptive to DMA requests is provided by mask register 2. In contrast to the mask
register |, all four channels are affected. Use this register only to change the status for all four channels simultaneously

As its name suggests, the mode register determines a channel's operating mode. You can specify if the next DMA transfer
will happen as a singhe transfer, a block transfer, or a demand transfer. Italso specifies if the channel is to cascade two DMA
rontrollers. In most cases vou won't have to change this later setting since this happens when the computer is booted

This register can be used to mask/unmask requests from a device for a certain DMA
channel. The lower 2 bits contains the channel number and the bit #2 is set if the channel

DMA Mask—2 Register

This register can also be used to mask the DMA channels. It contains a single bit for each
channel. The corresponding bit is set to mask the requests for that channel.

DMA Mode Register

Bit 5 of the mode register, determine the "direction” of 2 transfer, This "direction” isn't to or from a peripheral, rather it's
foorward or backwand direction in memory, 5o you can decrement instead of merement the memory address during a DMA
transfer, In his case, a data block is read backwards to forwards by the peripheral. Also the ending address of the buffer is
loaded into the proper register before stanting the transfer

This register can be used to set the mode on each. The slide shows the detail of the values
and bits which should be placed in the register in order to program a required mode.

Setup & Query of DMA

l'o set up one of these registers to determine the start address or the length of a DMA transfer. you must output to port 0Ch
or ODEh. A internal FlipFlop, lowered to zero, shows the state of a Lo-bit transfer. Afer the FlipFlop is lowerad to zero,
it sends the low-order bvie of the address to the port, for example port 0Cdh for channel 1 of the AT master DMA controller
(AT channel 53 This outpunt trips the internal FlipFlop. The port now knows that the most signficant byte of the address is
coming. This procedure is necessary because access to the different 16-bit registers has to fit into the B-bit wide DMA
hardware Therefore a Li-hit valoe hag ta e divided imtooa loaw Bvtes and a hicoh Bvte Ao sinee the Towe and hieh Bvies are

A channel is programmed for a start address and the count of bytes to be transferred
before the transfer can take place. Both these values are placed in various registers
according to the channel number as shown by the slide above. Once the transfer starts
these values start changing. The start address is updated in to the current address and the
count is also updates as bytes are transferred. During the transfer the status of the transfer
can be analyzed by getting the values of these registers listed In the slide above for the
channel(s) involved in the transfer.

File System

File System N
«Disk Architecture For More Visit
*Disk Partitioning

*File systems www.VUAnswer.com

Disk Architecture

*Disk is a circular which is hollow from the center
*This shape is inherently useful for random
access.

Tracks are the circular division of the disk and the sectors are the longitudinal division of
the disk

Addressable unit Parameters
* Heads
*Sectors
*Tracks

An addressable unit on disk can be addressed by three parameters i.e. head #, sector # and
track #. The disk rotates and changing sectors and a head can move to and fro changing
tracks. Each addressable unit has a unique combination of sec#, head# and track# as its
physical address.

Blocks

* Blocks are the sectors per track

*Smallest addressable unit in memory

*Address of block is specified as a unique
combination of three parameters (i.e. track, head,
sec)

Density of Magnetic media
* Density of magnetic media is the determinant of

the amount of data that can reside stably on the
disk for example floppy disk come with different

densities.
*Double Density
*High Density

Effect of surface area on disk size
* Increasing the surface area clearly increases the
amount of data that can reside on the disk as more
magnetic media no resides on disk but it might
have some drawbacks like increased seek time in
case only one disk platter is being used

Effect of surface area on disk size
* Increasing the surface area clearly increases the
amount of data that can reside on the disk as more
magnetic media no resides on disk but it might
have some drawbacks like increased seek time in
case only one disk platter is being used

Cylinders

* In case of hard disk where there are number of
platters the term track is replaced by cylinder
*Cylinder is a collection of corresponding tracks
if track on platter changes so will the tracks on
rest of the platters as all the heads move
simultaneously

Rotational Delay

» While accessing a selected block the time
required by the disk to rotate to the specified
sector is called rotational delay

Seek Time

» While accessing a selected block Time required
by the head to reach the particular track/cylinder
is called seek time

Access Time

* The accumulative time that is required to access
the selected block is called access time

*Access time includes the delay required by disk
rotation as well as head movement.

Head is like Electric Coil

* Disk follow the basic principle of magnetism of
dynamo.

*When ever a magnetized portion of disk runs
along the coil like head electricity is produced in
the head which is interpreted as a logic 1

*And whenever a demagnetized portion on the

For More Visit

www.VUAnswer.com

disk runs through the head no electricity is
produced in head which is interpreted as logic 0

Head position and precautions

* The head is touching the surface of floppy disk
which rotates at a low speed of 300 RPM

*The head is not touching the surface of hard disk
which run at high speeds up to 9600 RPM but is
at a few microns distance from the surface

*All the magnetic disk are made out of magnetic
media and hence data may be lost by exposing
them to sunlight, heat, radiation, magnetic or
electric fields.

*Dust is harmful and even fatal in case of head
disk by the virtue of its speed and its distance of
head from the surface

Hard Disk
Reading/Writing a physical Block

* biosdisk(int cmd, int drive, int head, int track,
int sector, int nsects, void * buffer);

Cmd 0 = disk reset

1 = disk status (status of last disk operation)

2 = disk read

3 = disk write

4 = disk verify

5 = disk format

The function

biosdisk() can be used to read or write a physical block. The slide shows its parameter. It
takes the command (cmd), drive number, head number, track number, number of sectors
to be read or written and the memory from where the data is to read from or written to.
Command signifies the operation that is to be performed.

Reading Writing a physical Block
* Drive 0x80 = first fixed disk (physcial drive)
0x81 = second fixed disk

0x82 = third fixed disks

Ox00= first removable disk
0x01 = second removable disk

E)'r.i\'/é”number is described in the slide below it starts from O for first removable disk and
starts from 0x80 for first fixed disk.

Limitation of biosdisk

* Biosdisk() calls int 13H/0/1/2/3/4/5
*Details of 13H services used by Biosdisk()
*On Entry

AH = service #

For More Visit

www.VUAnswer.com

AL=No. of sectors

BX = offset address of data buffer

CH = track #

CL = sector #

DH = head/side #

DL = Drive #

ES = Segment Address of buffer.

However there are some limitation of this biosdisk() while using large disks. This

function uses the int 13H services listed in the slide above.

Limitation of biosdisk()

» Large sized disk are available now with

thousands of tracks

*But this BIOS routine only is capable of

accessing a max. of 1024 tracks.

*Hence if a large disk is being used not whole of

the disk can be accessed using this routine.

The parameter sizes provided by these services may not be sufficient to hold the track
number of block to be accessed.

Extended BIOS functions

» Extended BIOS functions of int 13h can be used
for operations on higher tracks

*As discussed later usual BIOS functions can
access a maximum of 504MB of disk approx.

Highest biosdisk() capacity

* Hence the highest capacity of disk can be

accessed using bios functions is

*63x16x1024x512= 504 MB approx.

But IDE disk interface can support disks with memory space larger than 504MB

Highest IDE capacity

» Hence highest physical capacity of the disk

according to the IDE interface is

255x16x65536x512 = 127GB

*Extended BIOS functions allow to access disk

with sizes greater than 504 MB through LBA

translation.

Extended services require that the address of the block is specified as a LBA address.

LBA Translation Method

* Each unique combination of three parameters is
assigned a unique index as shown below

*Firstly all the sectors of a cylinder are indexed
for head=0, then when whole track has been
indexed the sector in the track of same cylinder
with head =1 are indexed and so on up till the end
of all heads

When done with one cylinder the same is repeated
for the next cylinder till the end of cylinders

For More Visit

www.VUAnswer.com

LBA translation is done by numbering the blocks with a single index. The indexes are
assigned to blocks as shown in the slide below. In terms of the disk geometry firstly all
the sectors of a track will be indexed sequentially, then the track exhausts the next track is
chosen on the other side of the disk and so on all the tracks in a cylinder are indexed.
When all the blocks within a cylinder has been indexed the same is done with the next
cylinder.

if the CHS (cylinder, head , sector) address of a disk is known it can be translated in to
the LBA address and vice versa. For this purpose the total number of cylinders, heads and
sectors must also be known.

Mathe matical Notation for LEBA translation
*LBA address =(C *H’ +H)* 8"+ §—1
Where

C = Selected cylinder number

H’ = No. of heads

H = Selected head number

S’=Maximum Sector number

S= Selected Sector number

Also conversely LBA to CHS translation can also be done using the formulae discussed
in the following slide but for this the total number of cylinders, heads and sectors within
the disk geometry should be known

LBA to CHS translation

* Conversely LBA address can be franslated into

CHS address

cylinder = LBA / (heads per cylinder *
sectors_per_track)

temp = LBA % (heads per cylinder *
sectors_per_track)

head = temp / sectors_per_track
sector = temp % sectors_per_track + 1

Disk Address Packet is a data structure used by extended int 13H services to address a
block and other information for accessing the block. Its structure is defined in the slide
below.

Disk Address Packet

Offset | Size Description
0 Byte Size, Should not be less than 16
1 Byte Reserved
2 Byte No. of blocks to transfer, Max value
no greater than 7FH
3 Byte Reserved
4 Double Far address of buffer
Word
] Quad LBA address
word

For More Visit

www.VUAnswer.com

Hard Disk, Partition Table
Extended Read

* Service used for extended read is int 13h/42h
On Entry

AH=42H

DL=drive #

DS:Sl= far address of Disk address packet

On Exit

If CF=0

AH=0= Success

If CF=1

AH= Error code

Interrupt 13H/42H can be used to read a LBA addressed block whose LBA address is
placed in the Disk Address packet as described in the slide above.

Extended Write

* Service used for extended write is int 13h/43h

On Entry

AH=43H

AL=0,1 write with verify off

2 write with verify on

DL=drive #

DS:Sl= far address of Disk address packet
On Exit

If CF=0

AH=0= Success

If CF=1

AH= Error code

Similarly int 13H / 43H can be used to write onto to LBA addressed block as described in

the slide above.

The above slides list a program that that performs a block read operation using the
interrupt 13H/42H. A structure of type DAP is create an appropriate values are placed
into it which includes its LBA address. The offset address of dap is placed in Sl register
and the DS already contains its segment address as it has been declared a global variable.
The drive number is also specified and the interrupt is invoked. The interrupt service
reads the contents of the block and places it in a buffer whose address was specified in
dap.

Disk Partitioning

* Partition Table contains information pertaining
to disk partitions.

» Partition Table is the first physical sector

Head = 0 For More Visit
Track/Cylinder =0
Sec=1orLBA=0 www.VUAnswer.com

« Partition Table at CHS = 001 is also called MBR
(Master Boot Record).

Structure of Partitioning Table
» Total size of Partition Table is 512 bytes.

» First 446 bytes contains code which loads the
boot block of active partition and is executed at
Boot Time.

* Rest of the 66 bytes is the Data part.

* Last two bytes of the Data part is the Partition
table signature.

File System for Each O.S.

* On a single disk there can be 4 different file
systems and hence 4 different O.S.

* Each O.S. will have its individual partition on
disk.

* Data related to each partition is stored in a 16-
bytes chunk within the Data Part of Partition
Table.

Structure of Data Part of P.T.

The data part can contain information about four different partitions for different
Operating systems. Each partition information chunk is 16 bytes long and the last two
bytes at the end of the partition table data part is the partition table signature whose value
should be AAS5 indicating that the code part contains valid executable code.

Primary Partition

* Partition defined in the MBR (Master Boot
Record) are primary partition.

*» Each Primary Partition contains information
about its respective O.S.

» However if only one O.S. is to be installed then
extended partitions.

Extended Partitions

However if a single operating system is to be kept for instance, then the disk can be
divided into primary and extended partitions. Information about primary and extended
partition is kept in the first physical block. The extended partition may again be divided
into a number of partitions, information about further partitions will be kept in extended
partition table which will be the first physical block within extended partition (i.e. it will
not the first block of primary partition.). Moreover there can be extended partitions within
extended partitions and such that in then end there are number of logical partitions this
can go on till the last drive number in DOS.

Partition Table Il

Here it can be seen that the first partition table maintains information about the primary
and extended partitions. The second partition table similarly stores information about a
logical and a extended partition within the previous extended partition. Similarly for each
such extended partition there will be a partition table that stores information about the
logical partition and may also contain information about any further extended partition. In
this way the partition tables form a chain as depicted in the slide below. The last partition
table within the chain contains just a single entry signifying the logical drive.

For More Visit

www.VUAnswer.com

Above is a listing of a simple program that reads the partition table using the extended
13H services. It then displays the contents of the data part of the partition table read. For
this purpose it uses various data structures designed in reflection of the partition table and
16 bytes data entries within. The program uses recursion and calls the getpart() function
recursively whenever it finds an extended partition to read the data within the extended
partition table.

On Entry:

AH - 48

DL — Drive number

DS:Sl — Address of result buffer

On Exit:

Carry Clear

AH-0

DS:SI - result buffer

Carry Set

AH — Error Code

The partition table data entry also stores the CHS address of the starting block. But this
address is left insignificant if a LBA enable disk is in question. However LBA address
can be used in place of the CHS address, and in case CHS address is required it can be
calculated if the total number of tracks, sectors and heads are known. To get the total
number of tracks, sectors and head the above described service can be used.

Type Description
Word Buffer Size. must be 26 or greater. The caller sets this value to the maximum buffer

size. [fthe length ofthis buffer is less than 30, this functions does not retum the
pointer to the Enhanced Disk Drive structure (EDD). If the Buffer Size is 30 or
oreater on entry, it is set 1o exactly 30 on exit. Ifthe Buffer Size is between 26 and
29, it is set to exactly 26 on exit, Ifthe Buffer Size is less than 26 on entry an error is
retumad.

Word Information Flags

In the following table, a [bit indicates that the feature i available, a 0 bit indicates
the feature is not available and will operate ina manner consistent with the
convenpm " i

Bit Description

0 DMA boundary errors are handled transparently

1 The geometry supplied in bytes 8-12 is valid

2 Device is removable

3 Device supports write with verify

4 Device has change line suppori ibit 2 musi be set)

5 Device s lockable (bit 2 must be set)

3 Device geometry is set to maximum, no media is present { bit 2

must be set). This bit is urned of f when mediais present m a
remavable media device.

T-15 | Reserved, must be O

For More Visit

www.VUAnswer.com

Droukike Wond Member of plvsdcal evlindsrs. This = | greater than the maximum wvlinder nusmber

Uze [nt | 3h Fo 08h to find the fogloal sumber of cylinders
Droighilke W ornd Miamiber ol r--J.-| afcafl heads, Thimis | greated thany the manamum head numbser. Lise
Int 13h Fn O8h 1o find the fogical namber of heads
12 Doukle Wornd Member of plvsieal seciors per track, This numbser s the same x the maximum
secbor nurmbser becamse sector addresses are | based. Use Iet | 3h Fo 08k to find the

foptor! namber o f sechors per track

16 Chid Word Mambr of plisfcal sector. This is | greater thas e maximum seclor nuimber

M Word Mumber of bytes in o sector

6 Dhouble Word Peinter to Enlamced Disk Drive (EDD) conBperation paramcters. This Geld is
only present il Int 13h. Fn dlh, CX register bit 2 is emabled. This (Geld points 1o
a lemparary bulfer which the BIOS may re-use on subsequent Int 135 ealls. A
value ol FFFFh: FFFFh in thiz febl means that the pointer is invalid.

LSN (Logical Sector Number)

Boot Block has LSN =0

« If the blocks are indexed from the boot block such
that the boot block has index = 0,Then this index is
called LSN.

* LSN is relative index from the start of logical drive,

not the physical drive.
For fixed disk

Hidden Blocks =

No. of Sec/Track

LSN is also indexed like LBA the only difference is that LBA is the address relative to
the start of physical drive (i.e. absolute), whereas LSN address is the address from the
start of logical partition i.e relative.

As in the above example it can be noticed that the LBA = 0 is not the same as LSN=0.
The LBA=0 block is the first block on disk. Whereas each logical partition has LSN=0
block which is the first block in logical drive and is not necessarily the first block on
physical drive. Also notice the hidden blocks between the first physical block on each
partition and its first LSN block. These hidden blocks are not used by the operating
system for storing any kind of data.

Conclusion

* LBA is physical or absolute address.

* LSN is relative address with respect to the start of
Logical Drive.

File System Data Structures

* BIOS Parameter Block (BPB)

* Drive Parameter Block (DPB)

* File Control Block (FCB)

* FAT 12, FAT 16, FAT 32

* Master File Table (MFT)

To understand the file systems of DOS and Windows the above given data structure

should be understood which are used by the operating system for file management.

Anatomy of a FAT based file system

Starting block(s) is /are

the boot block(s), immediately after which the FAT (File allocation table) starts. A typical
volume will contain two copies of FAT. After FAT the root directory is situated which
contain information about the files and folders in the root directory. Whole of this area
constitutes the systems area rest of the area is used to store user data and folders

For More Visit

www.VUAnswer.com

Clusters

* A cluster is a collection of contiguous blocks.

» User Data is divided into clusters

* Number of blocks within a cluster is in power of 2.
* Cluster size can vary depending upon the size of
the disk.

* DOS has a built in limit of 128 blocks per cluster.

« But practically limit of 64 blocks per cluster has
been established.

* We will learn more about the size of clusters, later.

BPB (BIOS Parameter Block)
« Situated within the Boot Block.
« Contains vital information about the file system.

BIOS parameter block is a data structure maintained by DOS in the boot block for each
drive. The boot block is typically a 512 byte block which as seen the previous slides is the
first logical block i.e. LSN = 0. It contains some code and data. The data part constitutes
the BPB.

BPE (BIOS Parameter Block)

Byte Field
Offset Length
ox0B WORD Bytes per Sector. The size of a hardware
sector. Usually 512.

0x0D BYTE Sectors Per Cluster. The number of sectors
in a cluster. The default cluster size for a
volume depends on the disk size and the
file system.

0x0E WORD Reserved Sectors. The number of sectors
from the Partition Boot Sector to the start
of the first file allocation table, including
the Partition Boot Sector. The minimum
value is 1.

0x10 BYTE Number of file allocation tables (FATs). The
number of copies of the file allocation table
on the volume. Typically, the value of this
field is 2.

ox11 WORD Root Entries. The total number of filea name
entries that can be stored in the root folder
of the volume.

Meaning

ox13 WORD Small Sectors. The number of sectors on
the volume if the number fits in 16 bits
(65535). For volumes larger than 65536
sectors, this field has a value of 0 and the
Large Sectors field is used instead.

ox15 BYTE Media Type. Provides information about the
media being used. A value of OxF8
indicates a hard disk.

ox16 WORD Sectors per file allocation table (FAT).
Number of sectors occupied by each of the
file allocation tables on the volumae.

ox18 WORD Sectors per Track.

Ox1A WORD Number of Heads.

0x1C DWORD Hidden Sactors.

0x20 DWORD Large Sectors. If the Small Sectors field is
zero, this field contains the total number of
sectors in the volume. If Small Sectors is
nonzero, this field contains zero..

Ox24 BYTE Physical Disk Number. This is related to
the BIOS physical disk number. Floppy
drives are numbered starting with Dx00 for
the A disk. Physical hard disks are
numbered starting with 0x80. The value is
typically 0x80 for hard disks, regardless of
how many physical disk drives exist,
because the value is only relevant if the
device is the startup disk.

0x25 BYTE Current Head. Mot used by the FAT file
system. (Reserved)

0x26 BYTE Signature. Must be either 0x27, 0x28 or
0x29 in order to be recognized by
Windows.

ox27 4 bytes Volume Serial Number. A unique number
that is created when you format the
volume.

0x2B 11 bytes Volume Label.

0x36 8 bytes System ID. Either FAT12 or FAT16,
depending on the format of the disk.

File System Data Structures Il (Boot block)

The LSN of the boot block is 0. The information contained within the BPB in boot block
can be used to calculate the LSN of the block from where the user data starts. It can be
simply calculated by adding the number of reserved sector, sectors occupied by FAT
copies * number of FAT copies and the the number of blocks reserved for root dir.

Inside a Boot Block
» Contains Code and Data
jmp codepart

OSName

BIOS For More Visit
Parameter Block

codepart: www.VUAnswer.com

* Boot Block executes at Booting time.

Besides the LBA address a LSN address can also be used to address a block. If the LSN
address is known the absread() function can be used to read a block and abswrite() can be
used to write on it as described in the slide below where nsect is the number of sector to
be read/written.

Reading/ Writing a Block

* absread()

is used to read a block given its LSN

* abswrite()

is used to write a block given its LSN

absread(int drive, int nsects, long Isec, void *buffer);
abswrite(int drive, int nsects, long Isec, void *buffer);

File System Data Structures Il (DPB)
Besides the BPB another data structure can be used equivalently called the DPB (Drive
parameter block). The operating system translates the information in BPB on disk into the
DPB which is maintained main memory. This data structure can be accessed using the
undocumented service 21H/32H. Its detail is shown in the slide below.

The DPB contains the information shown in the table below. This information can be
derived from the BPB but is placed in memory in the form of DPB.

DPB (Drive Parameter Block)

Offset Size Description

00h BYTE Drive number (00h = A:, 01h = B:, etc)
01h BY TE Unit number within device driver

0zh WORD Bytes per sector

04h BYTE Highest sector number within a cluster
05h BYTE Shift count to convert clusters into sectors

06h WORD Number of reserved sectors at beginning
of drive

08h BYTE Number of FAT's
09h WORD Number of root directory entries

0Bh WORD Mumber of first sector containing user
data

0Dh WORD Highest cluster number { number of data
cluster +1)

DPB (Drive Parameter Block)

Offsat Size Description

OFh WORD number of sectors per FAT

11h WORD Sector number of first directory sector
13h DWORD @ Address of device driver header

i7h BYTE Media ID byte

18h BYTE 00h if disk accessed, FFh if not

i9h DWORD Pointer to next DPB

1Dh WORD Cluster at which to start search for free

space when writing, usually the last
cluster allocated

1iFh WORD Number of free clusters on drive, FFFFh if
not known

Root Directory, FAT12 File System

The DOS directory structure is a Tree like structure. The top most level of the tree being
the root directory. The root directory contains files and folders. Each folder can contains
more files and folders and so on it continues recursively.

File

* Is logically viewed as an organization of Data.

* Physically it can be a collection of clusters or
blocks.

* O.S. needs to maintain information about the
cluster numbers of which a file may be comprised
of.

Control information about files are maintained in a data structure called the File control
block (FCB). The FCB for each file is created and stored in the disk.

The root directory consists of FCBs for all the files and folders stored on the root
directory. To obtain these FCBs, the portion on disk reserved for root directory can be
read.

In the above two slides first the contents of DPB are read to find the start of the root
directory. Using this block number the contents of root directory are read, as it can be
seen they contain number of FCBs each containing information about a file within the
directory.

The user data area is divided into clusters. The first cluster in user data area is numbered 2
in a FAT based systems. A cluster is not the same as block and also there are no system
calls available which use the cluster number. All the system calls use the LSN address. If

the cluster number is known it should be converted into LSN to access the blocks within

the cluster. Moreover all the information about file management uses the cluster number rather than
the LSN for simplicity and for the purpose of managing large disk space. So

here we devise a formula to convert the cluster number into LSN.

FAT12 File System Il, FAT16 File System

The root directory contains a collection of FCBs. The FCB for the file in question is
searched from where the first cluster of the file can be get.

After calculating the sector number for the cluster the contents of the file can be accessed
by reading all the blocks within the cluster. In this way only the starting cluster will be
read. If the file contains a number of cluster the subsequent clusters numbers within the
file chain can be accessed from the FAT.

Larger File Contents

* Larger files would be comprised of numerous
clusters.

* The first Cluster # can be read from FCB for rest
of the Cluster, a chain is maintained within the FAT.

FAT12

* FAT is a simple table which contains cluster
number of each file.

* FAT12 will have 12-bit wide entries and can have
2712 entries maximum.

* Although some of these entries may be reserved.

Above slides show how a cluster chain for a file is maintained in the FAT. The first
cluster number is in the FCB. Subsequent clusters will be accessed from the FAT using
the previous cluster number as index to look up into the FAT for the next cluster number.
A FAT theoretically will contain 2nentries where n is 12 for FAT 12 and 16 for FAT16.
But all the entries are not used some of the entries are reserved following slide shows its
detail.

Unused FAT Entries

* Reserved Entries = FFOH ~ FF6H

* EOF value = FF7H ~ FFFH

* First Two Clusters = 0,1

* Free Cluster =0

* Max. range of Cluster # = 2 ~ FEFH
* Total # of Clusters of FAT12 = FEEH

There can various volume with various sizes with FAT12 or FAT16. The number of
entries for FAT 12 or FAT16 are limited then the question arises how can a certain
volume with moderate space and another volume with large space can be managed by the
same FAT system. The answer is that the number of entries might be same but the size of
cluster may be different. The cluster size can vary from 512 bytes to 32K in powers of 2
depending upon the volume size.

FAT12 File System (Selecting a 12-bit entry within
FAT12 System)

For More Visit

www.VUAnswer.com

There is no primitive data type of 12 bits. But the entries in 12 bit FAT are 12 bits wide.
Three consecutive bytes in FAT 12 will contain two entries.

File Organization

Deleted Files

* OxE5 at the start of file entry is used to mark the
file as deleted.

* The contents of file still remain on disk.

» The contents can be recovered by placing a valid
file name, character in place of E5 and then
recovering the chain of file in FAT.

« If somehow the clusters used by deleted file has
been overwritten by some other file, it cannot be
recovered.

FAT32 File System

Let’s now perform few more experiments to see how long file names are managed.
Windows can have long file names up to 255 characters. For This purpose a file is created
with a long file name

Long FileName

Volume in drive H is NEW VOLUME

Volume Serial Number is 8033-3F79

I n the above slide it can be noticed that the long file name is also stored with the FCBs.
Also the fragments of Unicode strings in the long file name forms a chain. The first byte
in the chain will be 0x01, the first byte of the next fragment will be 0x02 and so on till the
last fragment. If the last fragment is the nth fragment starting from O such that n is
between 0 and 25 the first byte of the last fragment will be given as ASCII of ‘A’ plus n.

Now lets move our discussion to FAT32. In theory the major difference between FAT 16
and FAT 32 is of course the FAT size. FAT32 evidently will contain more entries and can
hence manage a very large disk whereas FAT16 can manage a space of 2 GB maximum
practically.

Following slide shows the structure of the BPB for FAT32. Clearly there would be some
additional information required in FAT32 so the structure for BPB used in FAT32 is
different.

Fat32 BPB Structure

BPE_RavdSecCnt 14 2 Number of reserved sectors in the Reserved region of the volume
starting at the first sector of the volume. This field must not be 0.
For FATI2 and FATI16 volumes, this value should never be
anything other than 1. For FAT32 volumes, this value is typically
32, There is a lot of FAT code in the world “hard wired” to |
reserved sector for FATI2 and FAT16 volumes and that doesn™t
bother to check this field to make sure it is 1. Microsoll operating
systems will properly support any non-zero value in this figld.

For More Visit

www.VUAnswer.com

BPE_NumFATs

The count of FAT data stroctures on the volume. This feld should
alwavs contain the value 2 for any FAT volume of any tvpe,
Adthough any value greater than or equal to 1 s perfectly valid,
many =oflware programs ad a fow operating systems" FAT file
system drivers may ot function properly ifthe value is something
other than 2. All Microsoft file system drivers will support a value
oller than 2, bun it is sull highly recommmendaed that no salue other
than 2 be used in this field.

The reason the standard value for this feld is 2 is o provide redun-
dancy for the FAT data strocture so that il a sector goes bad in one
of the FATs, that data is meol lost becanse it is duplicated in the other
FAT. On non=disk-based media, such as FLASH memory cands,
where such redundancy is a useless feature, a value of 1 may be
used W save the space that a second copy of the FAT uscs, but
some FAT file system drivers might not recognize such a volunwe
propery.

BPBE_RootEmCnt

17

b

For FATI2 and FAT IS volumes, this lield contans the count of 32-
byte dircctory entrics in the root directory. For FAT32 volumes,
this Feeld must be set o0, For FATL2 and FATIG volumes, this
value should always specify a count that when multiplied by 32
resulls in an even multiple of BPB_ByisPerSec. For maxinmim
compatibility, FAT16 volumes should use the value 512,

BPE_TolSecl o

15

LB

This field i= the old To-hit total count of sectors on the volume.
Auddes the count of all sectors inall four regions of the
s Tield can be ;i is O, then BPB_TotSeci 2 must be
moreero. For FATA2 volumes, this Geld must be O, For FAT2 and
FAT LS wvolumes, this field contains the sector count, and
BPB_TotSec?2 i 006 the total sector count “fits” {is less than

Chag DO .

BPFR_Media

OxF® is the standard value for “fixed” (non-removable) media. For
removable media, OxFO is frequently used. The legal valwes for this
field are OxFO, OxFR, 0xFF9, 0xFA, OxFB, OxFC, 0xFD, 0xFE, and

(5FF. The only other imporant point is that whatever value is put
in here must also be put in the low bvie of the FAT|O] entrv. This
dates back to the old MS-DOS 1.5 media determination noted
earlier and is no longer usually used for anvithing,

BPB_FATSz16

7

This field i the FATI2ZFAT16 16-bit count of sectors occupied by
ONE FAT. OnFAT32 volumes this field must be 0. and
BPB_FATSz3I contains the FAT size count,

BPB_ SecPerTrk

Seclors per track for interrupt 0x13. This field is only relevant for
media that have a geometry (volume is broken down into tracks by
multiple heads and cylindersy and are visible on interrupt Ox13.
This field contzins the “sectors per track™ geometry valve,

BPE NumHBeads

Number of heals for interrupt Ox1 3. This field is relevant as
discussed earlier for BPB_SecPerTk. This field contains the one
based “count of heads™, For exanple, on a 1.44 MB 3.5-inch floppy
drive this value is 2

BPB_HiddSec

Count of hidden sectors precading the partition that contains this
FAT volume. This field is generally only relevant for media visitle
on interrupt 0x13. This field should always be zero on media that
are nolt partitionad. =xactly what value is appropriale is operating
svstem specific.

BPB_TotSeci2

This field i the new 32-bit total count of sectors on the volume.
This count inclades the count of all sectors in all four regions of the
volume. This field can bz O 10 it is 0, then BPB_TotSec |6 must be
non-zero. For FAT2 volumes, this field must be non-zero. For
FATIZFAT 16 volumes. this field contains the sector count if
BPB_TotSeclé is O (count is greater than or equal to Ox 10000},

Name

Offset
(hyte)

Sire
(bytes)

Fat12 and Fatl6 Structure Starting at Offset 36

Description

BS DrvNum

16

Int Dx13 drive number (¢.g. 0x80). This field supports MS-DOS
bootstrap and is set to the INT 0x13 drive number of the media
(000 for foppy disks, 0x80 for hard disks).

NOTE: This field is actually operating svstem specific.

BS_Reserved|

37

Reserved (used by Windows NT). Code that formats FAT volumes
should alwavs set this bvte to 0.

BS_BootSig

8

Extended boot signature (0x29). This is a signature byte that
indicates that the following three fields in the boot sector are
present.

BS_VollD

30

Volume serial number. This field. together with BS_Vollab.
supports volume tracking on removable media. These values allow
FAT file system drivers to defect that the wrong disk is inserted in a
removable drive. This 1D is usually generated by simply combining
the current date and time into a 32-bit value,

BS_VolLab

IR

Volume label. This field matches the 11-byte volume label
recorded in the root directory.

NOTE: FAT fike system drivers should make sure that they update
this field when the volume label file in the root directory has its
name changed or created. The setting for this field when there s no
volume label is the string “NO NAME

BS_FilSysType

54

Ong of the strings “FAT12 ", “FAT16 ", or “FAT
NOTE: Many people think that the string in this field has
something to do with the determination of what type of FAT
FATI2, FAT16, or FAT32—that the volume has. This is not trug.

There can be different volumes with different volume sizes. The device driver for file
handling would require knowing the FAT size. The following slide illustrates an
algorithm that can be used to determine the FAT size in use after reading the BPB.

FAT32 Structure Starting at Offset 36

Name

Offset
(bvte)

Size
{bvtes)

Description

BPB_FATSz32

i

1

This field is only defined for FAT32 media and does not exist on
FATI2 and FATI6 media. This field s the FAT32 32-bit count of
sectors oceupied by ONE FAT. BPB_FATSz16 must be 0.

BPB_ExtFlags

40

This field is only defined for FAT32 media and does not exist on

FATI2 and FATI6 media,

Bits 0-3 — Zero-based number of active FAT. Only valid if mimoring
is disabled.

Bits 4-6 ~ Reserved.

Bit 7 —0 means the FAT is mirrored at runtime into all FATs,

~ | means only one FAT is active; it is the one referenced

in bits 0-3,

Bits §-15 - Reserved.

BPB_FSVer

L

This field is only defined for FAT32 media and does not exist on
FATI2 and FAT16 media. High byte is major revision number.
Low byte is minor revision number. This is the version number of
the FAT32 volume. This supports the ability to extend the FAT32
media type in the future without worrving about old FAT32 drivers
mounting the volume. This document defines the version to 000, 1F
this field is non-zero, back-level Windows versions will not mount
the volume,

NOTE: Disk utilities should respect this field and not operate on
volumes with a higher major or minor version number than that for
which they were designed. FAT32 file system drivers must check
this field and not mount the volume if it does not contain a version
number that was defined at the time the driver was written.

BPE_RootClus

This field is only defined for FAT32 media and does not exist on
FATI2 and FATI6 media. This is set to the cluster number of the
first cluster of the root directory, usually 2 but not required to be 2.
NOTE: Disk utilities that change the location of the rot directory
should make every effort to place the first cluster of the rool
directory in the first non-bad cluster on the drive (i.e.. in cluster 2.
unless it’'s marked bad). This is specified so that disk repair utilities
can easily find the root directory if this field accidentally gets
zeroed,

BPR_FSInto

BPB_BkBootSec

48

1)

[

This fiekd 15 only defined for FAT32 media and does not exist on
FATIZ and FAT16 media, Sector number of FSINFO structure inthe
reserved area of the FAT3I2 voluime. Usually 1.

NOTE: There will be a copy of the FRINFO structure in BackupBoot,
but only the copy pointed to by this fiekl will be keptup to date (ie.
both the primary and backup bool ecord Will poinl o the same
SINFO sector),

field is only defined for FAT32 media and doss not exist on
FATI2 and FAT16 media. IF non-zero, indicates the sector number
in the reserved area of the volume of a copy of the boaot record.
Uspally 6. No value other than 6 is recommended.

BPBE_Reserved

This field is only defined for FAT32 media and does not exist on
FATI2 and FAT 16 media. Reserved for future expansion. Code
that formats FAT32 volumes should always set all of the bytes of
this field to 0,

BS_DrvNum

135 _Reserved |

[

This fiekd has the same definition @ it does for FAT12 and FATI1G
mediz. The only difference for FATI2 media is that iwe feld isai a
diffzrent offset in the boot sector.
This fiekd has the same definition as it does for FATI2 and FATIG
media. The only dilference for FAT32 media is that the field isata
diftzrent offset in the bool sector.

BS_BoolSig

(14

This fickd has the same definition as it coes for FATI2 and FATIE
media. The only difference for FAT32 mwedia is that the feld is ata
different offset in the bod seclor.

BS_VallD

67

This fiekd has the same definition as it does for FATI2 and FATIE
media. The only difference for FATI2 mwedia is that the field is ata
different offset in the boot sector.

BS Aollab

71

This fickd has the samez definition as it coes for FATI2 and FATIE
media. The only difference for FAT32 media is that the field is ata
different offset in the boo secior.

BS_TuSysType

Always set to the sirirg "FAT32 o Please see the note forths
field in the FATI2ZEATIG section earlier. This fiekd has nothing to
do with FAT tvpe determination.

Fat32 Entry

* Each entry is of 32-bits size but only
lower 28-bits are used.
* Higher 4-bits are not tempered.
» While reading higher 4-bits are

ignored.
» While writing higher 4-bits are not
changed.
FAT 32 Byte Directory Entry Structure
Name Offset Sire Description
(byte) {bytes)
DIR_ Name 1] 11 Short name.
DIR_Attr I | File attributes:
ATTR_READ_ONLY Oxi]
ATTR_HIDDEN 0x02
ATTR_SYSTEM 0x04
ATTR_VOLUME_ID O0x08
ATTR_DIRECTORY 0x10
ATTR_ARCHINE 0x20
ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID
The upper two bits of the attribute byte are reserved and should
always be set to 0 when a file is created and never modified or
looked at after that.

DIR_NTRes 12 I Reserved for use by Windows NT. Set value to 0 when a file is
created and never modify or look at it after that.

DIR_CriTimeTenth 13 I Millisecond stamp at file creation time. This field actually
contains a count of tenths of a second. The granularity of the
seconds part of DIR_CrTime is 2 seconds so this field 1s a
count of tenths of a second and its valid value range is 0-199
inclusive.

DIR_CriTime 14 2 Time file was created.

DR CrilDate |6 2 Dyate file was created.

DIR_LstAceDate 18 2 Last access date. Note that there is no last access time, only a
date. This is the date of last read or write. In the case of a write,
this should be set to the same date as DIR_WriDale.

DIR_FstClusHI 20 2 High word of this entry’s first cluster number (always 0 for a
FATI2 or FATIS volume),

DIR. Wt Time 22 2 Time of last write. Note that file creation is considered a write

DIR_WrtDate 24 2 Drate of last write. Note that file creation is considered a write.

Fat32 File System

Reserved Blocks
* No fixed space reserved for root

Anatomy of FAT32 based system differs from FAT16 based systems significantly as
explained by the slide below.

For More Visit

www.VUAnswer.com

directory.

* FCB of root directory are saved in a
cluster and the cluster # for root directory
is saved in BPB as discussed earlier.

In reflection of the anatomy of FAT32 based system the method used to translate the
cluster # into LSN also varies. The following formula is used for this purpose.

Starting Sector # for a Cluster
Starting Sector = Reserved Sect. + FatSize *
FatCopies + (cluster # - 2) *

size of cluster

In the FAT32 there is another special reserved block called FSInfo sector. The block
contains some information required by the operating system while cluster
allocation/deallocation to files. This information is also critical for FAT16 based systems.
But in FAT12 and 16 this information is calculated when ever required. This calculation
at the time of allocation is not feasible in FAT32 as the size of FAT32 is very large and
such calculations will consume a lots of time, so to save time this information is stored in
the FSInfo block and is updated at the time of allocation/deallocation.

FFAT32 FSInfo Sector Structure and Backup Boot Sector

Name Offset | Size Description
{bvte) {bvtes)
FSI_LeadSig 0 4 Value Oxd 1615232 This lead signature is used to validate that this
is in fact an FSInfo sector,
FSI_Reserved] 4 480 This field is cumently reserved for future expansion. FAT32 format

code should always initialize all bytes of this field to 0. Bytes in
this field must currently never be used.

FSI_StrueSig 454 4 Value Ox61417272, Another signature that is more localized in the
sector 1o the location of the fields that are used.
FSI Free Count 488 4 Contains the last known free cluster count on the volume, If the

computed. Any other value can be used, but is not necessarily
correct. It should be range checked at least to make sure it is <
volume ¢luster count.

FSI_Nxt_Free 492 4 This is a hint for the FAT driver. It indicates the cluster number at
which the driver should start looking For free clusters. Because a
FAT32 FAT is karge, it can be rather time consuming if there are a
lot of allocated clusters at the start of the FAT and the driver starts
looking for a free cluster starting at cluster 2, Typically this value is
sel 1o the last cluster number that the driver allocated. 1f the value is
looking at cluster 2. Any other value can be used, but should be
checked first to make sure it is a valid ¢luster number for the
volume.

FSI_Reserved? 496 12 This field is cumently reserved for future expansion. FAT32 format
code should always initialize all bytes of this field to 0. Bytes in
this field must currently never be used.

The following slide shows the anatomy of an NTFS based system. The FAT and root

directory has been replaced by the MFT. It will generally have two copies the other copy
will be a mirror image of the original. Rests of the blocks are reserved for user data. In the
middle of the volume is a copy of the first 16 MTF record which are very important to the

system.

0x00

0x03
0x0B
0x24
0x54

0x01FE

NTFS General Boot Sector Structure

3 bytes Jump
Instruction

LONGLONG OEM ID

25 bytes BPB For More Visit

48 bytes Extended BPB

426 bytes Bootstrap www.VUAnswer.com
Code

WORD End of Sector
Marker

The first 16 entries of the MFT are reserved. Rests of the entries are used for user files.
There is an entry for each file in the MFT. There can be difference in the way a file is
managed depending upon the size of the file.

MFT Entrv Detalls

Standard
Information

Attribute List

File Mame

Security
Descriptor

Data

Object ID

Logged Tool
Stream

Reparse Point

Index Root

Index
Allocation

Bitmap

VYolume
Information

Yolume Name

Includes information such as timestamp and link count.

Lists the location of all attribute records that do not fit in the MFT record.

A repeatable attribute for both long and short file names. The long name of the file
can be up to 255 Unicod e characters. The shot name is the 8,3, case-insensitive

name for the file, Additional names, or hard links, required by POSIX can he
included as additional file name attributes.

Describes who owns the file and who can access it.

Contains filedata, NTFS allows mukiple data attributes per file, Each file typically
has oneunnamed data attribute. A file can also have one or morenamed data
attributes, each using a particular syntax,

A volume-unique file identifier. Used bythe distributed link tracking service, Not all
files have object identifiers.

Similar to a data stream, but operations are logged to the NTF5S log file just like
NTFS metadata changes, This is used by EFS.

Used for wolume mount points, They are also used by Installable File System (IFS)
filter drivers to mark certain files as special to that driver.

Used to implement folders and other indexes.
Used to implement folders and other indexes.

Used to implement folders and other indexes.
Used only in the $¥olume system file, Contains the wolume version.

Used onlvin the $¥olume svstem file. Contains the volume label.

MFT System Entries

Master file table

Master file table
2

Lo file

Yolume

Attribute
definitions

Root file name
indesx

Cluster bitrnap

Boot sector

Bad cluster file
Security file

Upcase table

HTFS extension
file

§ it

& MftMirr

LoqgFile

tWolume

LattrDef

£Bitrmap
% Boot

£BadClus
$Secure

£lUpcase

$Extend

1

12-15

Contains one base file record for each file and folder on an NTFS
volume, If the dlocation information for a file or folder is too large
to fit within a single record, other file records are dlocated as well,

f duplicate image of the first four records of the MFT. This file
fquararntees access to the MFT in case of a single-sector failure,

Contains alist of transaction steps used for NTFS recoverability. Log
file size depends on the wolume size and can be as large as 4 MB, It
is used by Windows NT/2000 to restore consistency to NTFS after a
systern failure.

Contains information about the wolurne, such as the volurne label
and the volurne version,

A table of attribute names, nurnbers, and descriptions.

The root folder,

B representation of the wolume showing which clusters are in use,

Includes the BPB used to mount the volume and additional
bootstrap loader code used if the wolume is bootable,

Contains bad clusters for the volume,
Contains unique security descriptars for all files within a wolume.

Converts lowercase characters to matching Unicode uppercase
characers,

Used for warious optional extensions such as quotas, reparse point
data, and object identifiers,

Reserved for future use.

For NTFS simply the following formula will be used to translate the sector number into
cluster number.

Determining the Sector # from
Cluster #

Sector # = Cluster # * Sector Per Cluster

The following slides explain how the NTFS volume can be accessed in DOS. Normally it
can not be accessed if the system has booted in DOS as the DOS device drivers do not
understand NTFS.7

Accessing NTFS volume in DOS

* NTFS volume can not be accessed in DOS
using DOS based function like absread()

* DOS device drivers does not understand

the NTFS data structures like MFT etc.
* [f NTFS volume is accessed in DOS, it will
fire the error of Invalid Media.

How to Access NTFS volume using

BIOS Functions

» If the system has booted in DOS then a

NTFS volume can be accessed by an Indirect

Method, using BIOS functions..

* This technique makes use of physical

addresses.

* Sector can be accessed by converting their

LSN into LBA address and then using the

LBA address in extended BIOS functions to

access the disk sectors.

The above program uses the DPB to reach the clusters of a file. The getDPB() function
gets the far address of the DPB. Using this address the drive parameters are used to
determine the location of FAT and root directory. The file is firstly searched in the root
directory through sequential search. If the file name and extension is found the first
cluster number is used to look up into the FAT for subsequent clusters. The particular
block containing the next cluster within the FAT is loaded and the entry is read, similarly
the whole chain is traversed till the end of file is encountered.

Disk Utilities

Format

* Low Level Format

-- sets the block size.

-- sets the Initial values in the block.

-- indexes the block for optimal usage.

-- can be accomplished using BIOS

routines for small disks or extended

BIOS services for larger disks.

* Quick Format

-- initializes the data structures for file

management.

-- initializes and sets the size of FAT, root

directory etc, according to the drive size.

-- initializes the data in boot block and

places appropriate boot strap code for

the boot block.

Disk Partitioning Software
*Write the code part of partition table to
appropriately load the Boot Block of active
partition in primary partition table.

* Places data in the partition table regarding
primary and extended partitions.

* As per specification of the user assigns a
appropriate size to primary and extended
partition by modifying their data part.

Scan Disk

Surface Scan for Bad Sectors

* It attempts to write a block.

 After write it reads back the block contents.
 Performs the CRC test on data read back.

« If there is an error then the data on that block
is not stable the cluster of that block should be
marked bad.

* The cluster is marked bad by placing the
appropriate code for bad cluster so that they
may not be allocated to any file.

Lost Chains

* The disk scanning software may also look
for lost chains.

* Lost chains are chains in FAT which
apparently don’t belong to any file.

* They may occur due to some error in the
system like power failure during deletion
process.

Looking for Lost Chains

* For each file entry in the directory structure
its chain in FAT is traversed.

* All the cluster in the file are marked.

* When done with all the files and folders, if
some non-zero and non-reserved clusters are
left then they belong to some lost chains.

* The lost chains are firstly discretely
identified and then each chain can either be
restored to newly named files or can be
deleted.

Cross References

* If a cluster lie in more than one file
chain, then its said to be Cross
Referenced.

* Cross references can pose great
problems.

* Cross references can be detected easily
by traversing through the chain of all files
and marking the cluster # during traversal.
* If a cluster is referenced more than once
then it indicates a cross reference.

* To solve the problem only one reference
should be maintained.

For More Visit

www.VUAnswer.com

Defrag mentel‘ « Disk fragmentation is unwanted.

» Fragmentation means that clusters of a same file are not
contiguously placed, rather they are far apart, increasing seek
time hence access time.

« So its desirable that files clusters may be placed contiguously,
this can be done by compaction or defragme ntation.

« Defragmentation Software reserves space for each file in
contiguous block by moving the data in clusters and
readjusting.

* As a result of defragmentation the FAT entries will change
and data will move from one cluster to other localized cluster to
reduce seek time.

 Defragmentation has high computation cost and thus cannot
be performe d frequently.

F| Ie ReStOI’a'[IOI’I » FAT structure provides the possibility of recovering a file

after deletion, if its clusters were contiguous and have not been
over-written.

» DOS perform file deletion by placing OXE5 at the first byte of
it FCB entry and placing 0’s (meaning available) in the entries
for the file clusters in the FAT.

* Two task should be performed successfully to undelete a file
-- Replacing the OXES5 entry in FCB by a valid file name
character.

-- placing the appropriate values in FAT for

representation of file cluster chain.

« If any one of the above cannot be done then the file cannot be
fully recovered.

Memory Management
Memory Management

* Understanding of the data structures and

techniques used for memory management.

* Study of the overall memory areas used by

operating system and applications.

The following slide shows the memory map of the first LMB of RAM. The first 640KB is
called conventional RAM and the higher 384KB is called system memory. Some of the
memory areas are reserved for special purposes as described by the slide rest is user area
where user application can reside.

In higher processors, the main memory may be greater than 1MB. In this slide it shows
that the memory portion higher than 1MB is called extended memory and some unused
portion in system memory is called the expanded memory.

Expanded Memory

« also called EMS

* can be accessed using a driver called EMM386.EXE
« this driver allows the use of unused memory within
system memory.

Extended Memory

* also called XMS

* can be accessed by installing the driver HIMEM.SY'S

« this driver enable the extended memory by shifting from
Real to Protected Mode.

Dual Modes in Higher PCs

Higher PCs can operate in two modes
* REAL MODE

For More Visit

www.VUAnswer.com

* PROTECTED MODE

Real Mode

* PCs initially boots up in Real Mode. It may be shifted to
protected mode during the booting process using drivers
like HIMEM.SYS

* Only first 1 MB of RAM can be accessed in Real Mode.
» The Real Mode address is a 20-bit address, stored and
represented in the form of Segment ; Offset

* OS like DOS has a memory management system in
reflection of the Real Mode.

Protected Mode

* PC has to be shifted to Protected Mode if originally
boots in Real Mode.

* In Protected Mode whole of the RAM is accessible that
includes the Conventional, Expanded and Extended
Memories.

* OS like Windows has a memory management system
for Protected Mode.

* A privilege level can be assigned to a memory area
restricting its access.

Memory Management in DOS

* DOS uses the conventional memory first 640 KB for its
memory management.

* Additional 64 KB can be utilized by installing
EMM386.EXE and additional 64 KB in the start of
extended memory by installing HIMEM.SYS

* Smallest allocatable unit in DOS is a Paragraph, not a
Byte.

Paragraph

* Whenever memory is to be allocated DOS allocates memory in form of
Paragraph.

* A Paragraph can be understood from the following example

consider two Physical Addresses

1234 H : 0000 H

1235 H : 0000 H

* Note there is a difference of 1 between the Segment address.

* Now lets calculate the Physical address

12340 H

12350 H

Difference = 10 H

* A difference of 1 H in Segment address cause a difference of 10 H in Physical
address.

* DOS loader assign a segment address whenever memory area is allocated,
hence a change of 1 in Segment address will impart a difference of 16 D | 10 H
in physical address.

Data Structures for Memory

Management

» DOS makes use of various Data Structures for Memory
Management:

* MCB (Memory Control Block)

* EB (Environment Block)

* PSP (Program Segment Prefix)

For More Visit

www.VUAnswer.com

MCB or Arena Header

* MCB 1 used to control an allocated block mn memory.
» Every allocated block will have a MCB before the start
of block.

*» MCB 15 a 16-bytes large structure.

Size Offset

Byte] Contains ‘M’ if the MCB controls allocated
memery and *Z if it controls free space.

Word 1 Contains the Segment address of the PSP
and the program controlled by MCE.

Word 3 Contains number of Paragraphs controlled by
the MCB.

Byte [11] 5 Reserved or contains the program name in

case of higher wersions of DOS.

Environment Block

« Contains Environment information like Environment
variables and file paths for that program

PSP

« is situated before the start of a process.

« contains control information like DTA (Disk Transfer

Area) and command line parameters.

The following slide shows that two MCBs are allocated for each program typically. The
first MCB controls the Environment Block the next MCB controls the PSP and the
program. If this is the last program in memory then the MCB after the program has ‘Z’ in
its first byte indicating that it is the last MCB in the chain.

All the MCB forms a chain. If the address of first MCB is known the segment
address of next MCB can be determined by adding the number of paragraph
controlled by MCB + ! into the segment address of the MCB. Same is true for all
MCBs and hence the whole chain can be traversed.

How to Access the Start of Chain

* An documented service can be used to obtain the

address of the first MCB.

* Service 21H/52H is used for this purpose.

« This service returns

The address of DOS internal data structures in ES : BX

* 4-bytes behind the address returned lies the far address

of the first MCB in memory.

* Using this address and hence traversing through the

chain of MCBs using the information within MCBs.

The above slide shows how service 21H/52H is used to get the address of first MCB in
memory.

In the following slide the dump of the first MCB is taken. ‘M’ in the first byte at the
location read indicates the placement of MCB at this location. The address of next MCB
can be calculated by adding the number of paragraphs controlled by MCB + 1 into the
segment address. Using this method all the MCBs in memory are traversed till the last
MCB with first byte ‘Z’ is encountered.

Non-Contiguous memory allocation
Non-Contiguous Allocation

* Earlier Operating System like DOS has contiguous memory
management system i.e. a program cannot be loaded in memory if a
contiguous block of memory is not available to accommodate it.

* 80286 and higher processors support non-contiguous allocation.

* 80286 support Segmentation in Protected Mode, i.e. a process is
subdivided into segment of variable size and each segment or few
segments of the process can be placed anywhere in memory

* 80386 and higher processors also support Paging, i.e. a Process
may be divided into fixed size Pages and then only few pages may
be loaded any where in memory for Process Execution.

* The key to such non-contiguous allocation systems is the
addressing technique.

Address Translation

* In Protected Mode the direct method of
seg * 10H + offset for Logical to Physical
address translation is discarded and an
indirect method is adopted.

Selectors

* In Protected Mode the Segment Registers are used as
Selector.

* As the name suggest they are used to select a descriptor
entry from some Descriptor Table.

Descriptor

* A Descriptor describes a Memory Segment by storing attributes
related to a Memory Segment.

« Significant attributes of a Memory Segment can be its base
(starting) address, it length or limit and its access rights.

Descriptor Table

* GDT: Global Descriptor Table

* LDT: Local Descriptor Table

* IDT: Interrupt Descriptor Table

* GDT and LDT can have up to 8192 entries, each of 8-
bytes width.

* IDT can have up to 256 entries

Address translation in Protected mode
Selector

« A Selector is called a Selector because it acts as an
index into the Descriptor Table to selecta GDT or LDT
entry.

Address Translation in
Protected Mode

* All the tables are maintained in Main Memory.

» Segment Registers are used as Selectors.

* The Descriptor Entry selected from the Descriptor Table
is placed in a hidden cache to optimize address
translation.

Address Translation in
Protected Mode

*Whenever a Selector is assigned a new value, the hardware looks up into the
Descriptor Table and loads the Base Address, Limit and Access Rights into the
hidden cache.

*Whenever an instruction is issued the address referred is translating into Physical
address using the effective Offset within the instruction and the Base Address in the
corresponding Segment Cache, e.g.

movAX, [1234H]

effective offset = 1234H

base = base within the cache of DS

abs. address = base +1234H

Or in instruction

movDL, [EBP] For More Visit

www.VUAnswer.com

effective offset address = EBP

base address = base address in cache of SS register

abs. address = base address + EBP

» Hence the absolute address cannot be calculated directly from the Segment address
value.

Control Register

* 80386 and above have 4 Control Registers CRO ~ CR3.
* These Control Registers are used for conveying certain
control information for Protected Mode Addressing and
Co-Processors.

* Here we will illustrate only the least significant bit of
CRO.

* The least significant bit of CRO is PE-bit which can be
set to enable Protected Mode Addressing and can be
cleared to enter Real Mode.

Moving to Protected Mode

* Protected Mode can be entered by setting the PE bit of CRO, but
before this some other initialization must be done. The following

steps accomplish the switching from Real to Protected Mode

correctly.

1. Initialize the Interrupt Descriptor Table, so it contains valid Interrupt
gates for at least the first 32 Interrupt type numbers. The IDT may
contain up to 256, 8-byte interrupt gates defining all 256 interrupt

types.

2. Initialize the GDT, so it contains a NULL Descriptor, at Descriptor 0
and valid Descriptor for at least one Data and one Stack.

3. Switch to Protected by setting the PE-bit in CRO.

4. Perform a IntraSegment (near) JMP to flush the Internal Pre-fetch
Queue.

5. Load all the Data Selectors (Segment Registers) with their initial
Selectors Values.

6. The 80386 is now in Protected Mode.

Viruses

* Viruses are special program having ability to embed
themselves in a system resources and there on propagate
themselves.

State of Viruses

* Dormant State: A Virus in dormant state has

embedded itself within and is observing system activities.
« Activation State: A Virus when activated would
typically perform some unwanted tasks causing data loss.
This state may triggered as result of some event.

* Infection State: A Virus is triggered into this

state typically as a result of some disk operation. In this
state, the Virus will infect some media or file in order to
propagate itself.

Viruses
Types of Viruses

« Partition Table Virus
* Boot Sector Virus
« File Viruses

How Partition Table Virus Works

« The Partition Table Code is executed at boot time to choose the Active Partition.

« Partition Table Viruses embed themselves in the Partition Table of the disk.

« If the Virus Code is large and cannot be accommodated in the Code Part of 512-
bytes Partition Table block then it may also use other Physically Addressed Blocks
to reside itself.

« Hence at Boot time when Partition Table is to be executed to select the Active
Partition, the virus executes. The Virus when executed loads itself in the Memory,
where it can not be reached by the OS and then executes the original Partition Table
Code (stored in some other blocks after infection) so that the system may be booted

properly.

*When the system boots the Virus will be resident in memory and will typically
intercept 13H (the disk interrupt).

*Whenever a disk operation occurs int 13H occurs. The Virus on occurrence of 13H
checks if removable media has been accessed through int 13H. If so then it will copy
its code properly to the disk first Physical Block (and other blocks depending upon
size of Virus Code). The removable disk is now infected.

« If the disk is now removed and is then used in some other system, the Hard Drive
of this system will not be infected unless the system is booted from this disk. Because
only on booting from this removable disk its first physical block will get the chance
to be executed.

How Partition Table Virus Loads
itself

* The transient part of Command.Com loads itself such that its
last byte is loaded in the last byte of Conventional Memory. If
somehow there is some Memory beyond Command.Com’s
transient part it will not be accessible by DOS.

* At 40:13H a word contains the amount of KBs in
Conventional Memory which is typically 640.

* If the value at 40:13H is somehow reduced to 638 the
transient part of Command.Com will load itself such that its
last byte is loaded at the last byte of 638KB mark in
Conventional RAM.

* In this way last 2KB will be left unused by DOS. This
amount of memory is used by the Virus according to its own
size.

How Boot Sector Virus Works

* Boot Sector also works in almost the same pattern, the
only difference is that it will embed itself within the Boot
Block Code.

File Viruses

* Various Viruses embeds themselves in different
executable files.

* Theoretically any file that can contain any executable
code, a Virus can be embedded into it. i.e. .COM, .EXE
are executable files so Viruses can be embedded into
them, Plain Text Files, Plain Bitmap Files are pure data
and cannot be executed so Viruses cannot be actively
embedded into them, and even if they are somehow
embedded they will never get a chance to execute itself.

COM File

* COM File is a mirror image of the program code. Its
image on disk is as it is loaded into the memory.

* COM Files are single segment files in which both Code
and Data resides.

* COM File will typically have a Three Bytes Near Jump
Instruction as the first instruction in program which will
transfer the execution to the Code Part of the Program.

How COM File Virus Infects

Files

* A COM File Virus if resident may infect COM Files on
execution.

* Typically COM File Virus will Interrupt 21H Service
4B. This Service is used to load a Program.

* Whenever a Program is to be Loaded int 21H Service #
4BH is used to Load a Program. The Virus if resident will
check the parameters of this Service to get the file path. If
the File is .COM File then the Virus appends itself to the

For More Visit

www.VUAnswer.com

file and tempers with the first 3-bytes of .COM File so
that the execution branches to the Virus Code when the
program is executed.

How COM Virus Loads Itself

» When a file is Loaded in Memory it will occupy a number of
Paragraphs controlled by some MCB.

« If the file is infected the Virus is also loaded within the Memory
Avrea allocated to the Program.

« In this case the Virus does not exist as an Independent Program as
it does not have its own PSP. If the Program is terminated the Virus
Code will also be unloaded with the program. The Virus will try to
attain an Independent Status for which it needs to relocate itself and
create its own PSP and MCB in Memory.

* When the program runs the Virus Code executes first. The Virus
creates an MCB, defines a new PSP initializes the PSP and
relocates itself, updates the last MCB, so that it can exist as an
Individual Program, and then transfers the execution back to the
Original Program Code.

* Now if the Original Program Terminates the Virus will still
remain resident.

EXE File Viruses For More Visit
* The EXE File Viruses also works the same way in
relocating themselves. www.VUAnswer.com

* The main difference in COM File and DOS EXE File is
that the COM File starts its execution from the first
instruction, whereas the entry point of execution in EXE
File can be anywhere in the Program.

* The entry point in case of EXE File is tempered by the
Virus which is stored in a 27-byte header in EXE File.

Detection

* Viruses can be detected by searching for their Signature
in Memory or Executable Files.

* Signature is a binary subset of Virus Code. It is a part of
Virus Code that is unique for that particular Virus only
and hence can be used to identify the Virus

* Signature for a Virus is selected by choosing a unique
part of its Code. To find a Virus this Code should be
searched in memory and in files. If a match is found then
the system is infected.

Removal

Partition Table & Boot Sector Viruses

« Partition Table and Boot Sector Viruses can be removed
by re-writing the Partition Table or Boot Sector Code.

« If the Virus is resident it may exhibit stealth i.e. prevent
other programs from writing on Partition Table or Boot
Sector by intercepting int 13H

* In case it’s a stealth Virus the system should be booted
from a clean disk will not give the Virus any chance to
execute or load itself.

File Viruses

« If the Virus size is known Viruses can be removed easily from file.

« Firstly, the original value of first 3-bytes in case of COM File or the entry
point in case of EXE should be restored.

* The appended portion of Virus can be removed by coping the contents of
original file into a temporary file.

*The Virus Code is not copied.

» The original file is then deleted and the temporary file is renamed as the
original file.

