
Semaphores 

Hardware solutions to synchronization problems are not easy to generalize to more complex 

problems. To overcome this difficulty we can use a synchronization tool called a semaphore. A 

semaphore S is an integer variable that, apart from initialization is accessible only through two 

standard atomic operations: wait and signal. These operations were originally termed P (for wait) 

and V (for signal). 

The main disadvantage of the semaphore discussed in the previous section is that it requires busy 

waiting. While a process is in its critical section, any other process that tries to enter its critical 

section must loop continuously in the entry code. This continual looping is clearly a problem in a 

real multiprogramming system, where a single CPU is shared among many processes. Busy 

waiting wastes CPU cycles that some other process may be able to use productively. This type of 

semaphore is also called a spinlock (because the process spins while waiting for the lock). 

Spinlocks are useful in multiprocessor systems. The advantage of a spinlock is that no context 

switch is required when a process must wait on a lock, and a context switch may take considerable 

time. 

To overcome the need for busy waiting, we can modify the definition of semaphore and the wait 

and signal operations on it. When a process executes the wait operation and finds that the 

semaphore value is not positive, it must wait. However, rather than busy waiting, the process can 

block itself. The block operation places a process into a waiting queue associated with the 

semaphore, and the state of the process is switched to the waiting state. Then, control is transferred 

to the CPU scheduler, which selects another process to execute. the busy-waiting version is better 

when critical sections are small and queue-waiting version is better for long critical sections (when 

waiting is for longer periods of time). 

Problems with Semaphores 

Here are some key points about the use of semaphores: 

 Semaphores provide a powerful tool for enforcing mutual exclusion and coordinating processes. 

 The wait(S) and signal(S) operations are scattered among several processes. Hence, it is difficult 

to understand their effects. 

 Usage of semaphores must be correct in all the processes. 

 One bad (or malicious) process can fail the entire system of cooperating processes. 

Incorrect use of semaphores can cause serious problems. We now discuss a few of these problems. 

Deadlocks and Starvation 

A set of processes are said to be in a deadlock state if every process is waiting for an event that 

can be caused only by another process in the set. Starvation is infinite blocking caused due to 

unavailability of resources. These problems are due to programming errors because of the tandem 

use of the wait and signal operations. The solution to these problems is higher-level language 

constructs such as critical region (region statement) and monitor. 

There are two kinds of semaphores: 

 Counting semaphore whose integer value can range over an unrestricted integer domain. 

 Binary semaphore whose integer value cannot be > 1; can be simpler to implement. 
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Classic Problems of Synchronization 

The three classic problems of synchronization are: 

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining Philosophers Problem 

Bounded Buffer Problem 

assumes that the pool consists of n buffers, each capable of holding one item. The mutex 

semaphore provides mutual exclusion for accesses to the buffer pool and is initialized to the value 

1. The empty and full semaphores count the number of empty and full buffers, respectively. The 

semaphore empty is initialized to the value n; the semaphore full is initialized to the value 0. This 

code can be interpreted as the producer producing full buffers for the consumer, or as the consumer 

producing empty buffers for the producer. 

Readers Writers Problem 

A data object (such as a file or a record) is to be shared among several concurrent processes. Some 

of these processes, called readers, may want only to read the content of the shared object whereas 

others, called writers, may want to update (that is to read and write) the shared object. Obviously, 

if two readers access the data simultaneously, no adverse effects will result. However, if a writer 

and some other process (whether a writer or some readers) access the shared object simultaneously, 

chaos may ensue. To ensure these difficulties do not arise, we require that the writers have 

exclusive access to the shared object. This synchronization problem is referred to the 

readerswriters problem. 

The readers-writers problem has several variations, all involving priorities. The simplest one, 

referred to as the first readers-writers problem, requires that no reader will be kept waiting unless 

a writer has already obtained permission to use the shared object. In other words, no reader should 

wait for other readers to finish simply because a writer is waiting. The second readers-writers 

problem requires that once a writer is ready, that writer performs its write as soon as possible. In 

other words, if a writer is waiting to access the object, no new readers may start reading. A solution 

to either problem may result in starvation. In the first case, writers may starve; in the second case, 

readers may starve. 

Dining Philosophers Problem 

Consider five philosophers who spend their lives thinking and eating. The philosophers share a 

common circular table surrounded by five chairs, each belonging to one philosopher. In the center 

of the table is a bowl of rice, and the table is laid with five single chopsticks. When a philosopher 

thinks, she does not interact with her colleagues. From time to time, a philosopher gets hungry and 

tries to pick up the two chopsticks that are closest to her (the chopsticks that are between her and 

her left and right neighbors). A philosopher may pick up only one chopstick at a time. Obviously, 

she cannot pick up a chopstick that is already in the hand of her neighbor. When a hungry 

philosopher has both her chopsticks at the same time, she eats without releasing her chopsticks. 

When she is finished eating, she puts down both of her chopsticks and starts thinking again. One 
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simple solution is to represent each chopstick by a semaphore. A philosopher tires to grab the 

chopstick by executing a wait operation on that semaphore; she releases her chopsticks by 

executing the signal operation on the appropriate semaphores. Several possibilities that remedy the 

deadlock situation discussed in the last lecture are listed. Each results in a good solution for the 

problem. 

 Allow at most four philosophers to be sitting simultaneously at the table. 

 Allow a philosopher to pick up her chopsticks only if both chopsticks are available (to do this 

she must pick them up in a critical section) 

 Use an asymmetric solution; that is, an odd philosopher picks up first her left 

chopstick, whereas an even philosopher picks up her right chopstick and then her left chopstick. 

High-level Synchronization Constructs 

Critical regions 

All processes share a semaphore variable mutex, which is initialized to 1. Each process must 

execute wait(mutex) before entering the critical section and signal(mutex) afterward. If this 

sequence is not observed, two processes may be in their critical sections simultaneously. we 

describe one fundamental highlevel synchronization construct—the critical region. We assume 

that a process consists of some local data, and a sequential program that can operate on the data. 

Only the sequential program code that is encapsulated within the same process can access the local 

data. That is, one process cannot directly access the local data of another process. Processes can 

however share global data. 

Monitors 

Another high-level synchronization construct is the monitor type. A monitor is characterized by 

local data and a set of programmer-defined operators that can be used to access this data; local 

data be accessed only through these operators. The representation of a monitor type consists of 

declarations of variables whose values define the state of an instance of the type, as well as the 

bodies of procedures or functions that implement operations on the type. The monitor construct 

ensures that only one process at a time can be active within the monitor. Consequently, the 

programmer does not need to code this synchronization construct explicitly. While one process is 

active within a monitor, other processes trying to access a monitor wait outside the monitor. the 

monitor construct as defined so far is not powerful enough to model some synchronization 

schemes. For this purpose we need to define additional synchronization mechanisms. These 

mechanisms are provided by the condition construct (also called condition variable). A 

programmer who needs to write her own tailor made synchronization scheme can define one or 

more variables of type condition. 

Monitor-based Solution for the Dining Philosophers Problem 

Each philosopher before starting to eat must invoke the pickup operation. This operation ensures 

that the philosopher gets to eat if none of its neighbors are eating. This may result in the suspension 

of the philosopher process. After the successful completion of the operation, the philosopher may 

eat. Following this, the philosopher invokes the putdown operation and may start to think. The 

putdown operation checks if a neighbor (right or left—in this order) of the leaving philosopher 
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wants to eat. If a neighboring philosopher is hungry and neither of that philosopher’s neighbors is 

eating, then the leaving philosopher signals it so that she could eat. In order to use this solution, a 

philosopher i must invoke the operations pickup and putdown in the following sequence: It is easy 

to show that this solution ensures that no two neighbors are eating simultaneously and that no 

deadlocks will occur. 

The Deadlock Problem 

A set of blocked processes each holding a resource and waiting to acquire a resource held by 

another process in the set. Here’s an example: 

 System has 2 tape drives. 

 P1 and P2 each hold one tape drive and each needs another one. 

System Model 

A system consists of a finite number of resources to be distributed among a finite number of 

cooperating processes. The resources are partitioned into several types, each of which consists of 

some number of identical instances. Memory space, CPU cycles, disk drive, file are examples of 

resource types. A system with two identical tape drives is said to have two instances of the resource 

type disk drive. If a process requests an instance of a resource type, the allocation of any instance 

of that type will satisfy the request. If it will not, then the instances are not identical and the 

resource type classes have not been defined properly. A process must request a resource before 

using it, and must release the resource after using it. A process may request as many resources as 

it requires in order to carryout its designated task. Obviously, the number of resources requested 

may not exceed the total number of resources available in the system. Under the normal mode of 

operation, a process may utilize a resource in only the following sequence: 

1. Request: The process requests a needed resource. If the request cannot be granted immediately, 

then the requesting process must wait until it can acquire the resource. 

2. Use: The process can use the resource. 

3. Release: The process releases the resource. 

Deadlock Characterization 

The following four conditions must hold simultaneously for a deadlock to occur: 

1. Mutual exclusion: At least one resource must be held in a non-sharable mode; that is only one 

process at a time can use the resource. If another process requests that resource, the requesting 

process must be delayed until the resource has been released. 

2. Hold and wait: A process must be holding at least one resource and waiting to acquire additional 

resources that are currently being held by other processes. 

3. No preemption: Resources cannot be preempted. That is, after using it a process releases a 

resource only voluntarily. 

4. Circular wait: A set {P0, P1… Pn} of waiting processes must exist such that P0 is waiting for a 

resource that is held by P1, P1 is waiting for a resource that is held by P2, and so on, Pn-1 is waiting 

for a resource held by Pn, and Pn is waiting for a resource held by P0. 

Resource Allocation Graphs 



Deadlocks can be described more precisely in terms of a directed graph called a system resource 

allocation graph. This graph consists of a set of vertices V and a set of edges E. The set of vertices 

is portioned into two different types of nodes P={P0, P1… Pn}, the set of the active processes in 

the system, and R={R0, R1… Rn}, the set consisting of all resource types in the system. A directed 

edge from a process Pi to resource type Rj signifies that process Pi requested an instance of Rj and 

is waiting for that resource. A directed edge from Rj to Pi signifies that an instance of Rj has been 

allocated to Pi. Given the definition of a resource allocation graph, it can be shown that if the graph 

contains no cycles, then no process is deadlocked. If the graph contains cycles then: 

 If only one instance per resource type, then a deadlock exists. 

 If several instances per resource type, possibility of deadlock exists. 

Deadlock Handling 

We can deal with deadlocks in a number of ways: 

 Ensure that the system will never enter a deadlock state. 

 Allow the system to enter a deadlock state and then recover from deadlock. 

 Ignore the problem and pretend that deadlocks never occur in the system. 

These three ways result in the following general methods of handling deadlocks: 

1. Deadlock prevention: is a set of methods for ensuring that at least one of the necessary 

conditions cannot hold. These methods prevent deadlocks by constraining how processes can 

request for resources. 

2. Deadlock Avoidance: This method of handling deadlocks requires that processes give advance 

additional information concerning which resources they will request and use during their lifetimes. 

With this information, it may be decided whether a process should wait or not. 

3. Allowing Deadlocks and Recovering: One method is to allow the system to enter a deadlocked 

state, detect it, and recover. 

Deadlock Prevention 

By ensuring that one of the four necessary conditions for a deadlock does not occur, we may 

prevent a deadlock. 

Mutual exclusion 

The mutual exclusion condition must hold for non-sharable resources, e.g., printer. Sharable 

resources do not require mutually exclusive access and thus cannot be involved in a deadlock, e.g., 

read-only files. Also, resources whose states can be saved and restored can be shared, such as a 

CPU. In general, we cannot prevent deadlocks by denying the mutual exclusion condition, as some 

resources are intrinsically non-sharable. 

Hold and Wait 

To ensure that the hold and wait condition does not occur in a system, we must guarantee that 

whenever a process requests a resource, it does not hold any other resources. One protocol that can 

be used requires each process to request and be allocated all its resources before it begins 

execution. We can implement this provision by requiring that system calls requesting resources 

for a process precede all other system calls. An alternative protocol requires a process to request 
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resources only when it has none. A process may request some resources and use them. But it must 

release these before requesting more resources. 

The two main disadvantages of these protocols are: firstly, resource utilization may be low, since 

many resources may be allocated but unused for a long time. Secondly, starvation is possible. A 

process that needs several popular resources may have to wait indefinitely, because at least one of 

the resources that it needs is always allocated to some other process. 

No preemption 

To ensure that this condition does not hold we may use the protocol: if a process is holding some 

resources and requests another that cannot be allocated immediately to it, then all resources 

currently being held by the process are preempted. These resources are implicitly released, and 

added to the list of resources for which the process is waiting. The process will be restarted when 

it gets all its old, as well as the newly requested resources. 

Circular Wait 

One way to ensure that this condition never holds is to impose a total ordering of all resource types, 

and to require that each process requests resources in an increasing ordering of enumeration. 

Let R={ R1, R2, R3 }be resource types. We assign to each a unique integer, which allows us to 

compare two resources and to determine whether one precedes another in our ordering. 

Deadlock Avoidance 

One method for avoiding deadlocks is to require additional information about how resources may 

be requested. Each request for resources by a process requires that the system consider the 

resources currently available, the resources currently allocated to the process, and the future 

requests and releases of each process, to decide whether the current request can be satisfied or 

must wait to avoid a possible future deadlock. The simplest and most useful model requires that 

each process declare the maximum number of resources of each type that it may need. Given a 

priori information about the maximum number of resources of each type that may be requested by 

each process, it is possible to construct an algorithm that ensures that the system will never enter 

a deadlocked state. A deadlock avoidance algorithm dynamically examines the resource-allocation 

state to ensure that a circular wait condition can never exist. 

Safe State 

A state is safe if the system can allocate resources to each process in some order and still avoid a 

deadlock. More formally a system is in a safe state only if there exists a safe sequence. A sequence 

of processes <P1, P2… Pn> is a safe sequence for the current allocation state if, for each Pi, the 

resources that Pi can still request can be satisfied by the currently available resources plus all the 

resources held by all the Pj with j < i. In this situation, if the resources that Pi needs are not 

immediately available, then Pi can wait until all Pj have finished. When they have finished, Pi can 

obtain all of its needed resources, complete its designated task, return its allocated resources and 

terminate. When Pi terminates, Pi+1 can obtain its needed resources and terminate. If no such 

sequence exists, then the system is said to be unsafe. If a system is in a safe state, there can be no 

deadlocks. An unsafe state is not a deadlocked state; a deadlocked state is conversely an unsafe 

state. Not all unsafe states are deadlocks, however an unsafe state may lead to a deadlock state. 



Deadlock avoidance makes sure that a system never enters an unsafe state. A claim edge Pi →Rj 

indicates that process Pi may request resource Rj at some time in the future. A dashed line is used 

to represent a claim edge. When Pi requests resource Rj the claim edge is converted to a request 

edge. 

Banker’s Algorithm 

In this algorithm, when a new process enters the system, it must declare the maximum number of 

instances of each resource type that it may need, i.e., each process must a priori claim maximum 

use of various system resources. This number may not exceed the total number of instances of 

resources in the system, and there can be multiple instances of resources. When a process requests 

a set of resources, the system must determine whether the allocation of these resources will leave 

the system in a safe state. If it will, the resources are allocated; otherwise the process must wait 

until some other process releases enough resources. Let n be the number of processes in the system 

and m be the number of resource types. We need the following data structures in the Banker’s 

algorithm: 

 Available: A vector of length m indicates the number of available instances of resources of each 

type. Available[j] = = k means that there are k available instances of resource Rj. 

 Max: An n x m matrix defines the maximum demand of resources of each process. Max[i,j] = 

= k means that process Pi may request at most k instances of resource Rj. 

 Allocation: An n x m matrix defines the number of instances of resources of each type currently 

allocated to each process. Allocation[i,j] = = k means that Pi is currently allocated k instances of 

resource type Rj. 

 Need: An n x m matrix indicates the remaining resource need of each process. Need[i,j] = = k 

means that Pi may need k more instances of resource type Rj to complete its task. Note that Need[i,j] 

= = Max[i,j] - Allocation[i,j]. 

Safety Algorithm 

The algorithm for finding out whether or not a system is in a safe state can be described as follows: 

1. Let Work and Finish be vectors of length m and n, respectively. Initialize 

Work = Available and Finish[i] = false fori = 1, 2, …, n. 

2. Find an i such that both 

a) Finish[i] = = false 

b) Needi <= Work 

If no such i exists go to step 4. 

3. Work = Work + Allocationi 

Finish[i] = true 

Go to step 2 

4. If Finish[i] = = true for all i, then the system is in a safe mode. 

This algorithm may require an order of m x n2 operations to decide whether a state is safe. 

Resource Request Algorithm 

Let Requesti be the request vector for process Pi. if Requesti [j]=k, then process Pi wants k instances 

of resource Rj. When a request for resources is made by process Pi the following actions are taken: 



1. If Requesti <= Needi go to step 2. Otherwise, raise an error condition since the process has 

exceeded its maximum claim. 

2. If Requesti <= Available, go to step 3. Otherwise Pi must wait, since the resources are not 

available. 

3. Have the system pretend to have allocated the requested resources to process Pi by modifying 

the state as follows: 

Availabe = Available-Requesti ; 

Allocationi = Allocationi + Requesti ; 

Needi = Needi –Requesti; 

Invoke the Safety algorithm. If the resulting resource allocation graph is safe, the transaction is 

completed. Else, the old resource allocation state is restored and process Pi must wait for Requesti. 

Deadlock Detection 

If a system does not employ either a deadlock prevention or a deadlock avoidance algorithm then 

a deadlock may occur. In this environment, the system must provide: 

 An algorithm that examines (perhaps periodically or after certain events) the state of the system 

to determine whether a deadlock has occurred 

 A scheme to recover from deadlocks 

Single Instance of Each Resource Type 

If all resources have only a single instance, then we can define a deadlock detection algorithm that 

uses a variant of the resource allocation graph, called a wait-for graph. We obtain this graph from 

the resource allocation graph by removing the nodes of type resource and collapsing the 

appropriate edges. a deadlock exists in the system if and only if the wait for graph contains a cycle. 

To detect deadlocks the system needs to maintain the wait-for graph and periodically to invoke an 

algorithm that searches for a cycle in the graph. 

Several Instances of a Resource Type 

The wait for graph scheme is not applicable to a resource allocation system with multiple instances 

of each resource type. The deadlock detection algorithm described next is applicable to such a 

system. It uses the following data structures: 

 Available: A vector of length m indicates the number of available resources of each type. 

 Allocation: An n x m matrix defines the number of resources of each type currently allocated 

to each process. 

 Request: An n x m matrix indicates the current request of each process. If Request[i,j] = = k, 

then process Pi is requesting k more instances of resource type Rj. 

The algorithm is: 

1) Let Work and Finish be vectors of length m and n respectively. Initialize Work=Available. For 

i=1, 2,… , n if Allocation[i] ≠ 0 the Finish[i]=false; otherwise Finish[i]=true 

2) Find an index i such that both 

a. Finish[i] = = false 

b. Requesti ≤ Work 
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c. If no such i exists go to step 4. 

3) Work=Work + Allocationi 

a. Finish[i]=true 

b. Go to step 2. 

4) If Finish[i] = = false, for some i, 1≤ i ≤n, then the system is in a deadlock state. Moreover, if 

Finish[i] = = false, then Pi is deadlocked. 

Detection Algorithm Usage 

When should we invoke the deadlock detection algorithm? The answer depends n two factors: 

1. How often is a deadlock likely to occur? 

2. How many processes will be affected by deadlock when it happens? Hence the options are: 

 Every time a request for allocation cannot be granted immediately—expensive but process 

causing the deadlock is identified, along with processes involved in deadlock 

 Periodically, or based on CPU utilization 

 Arbitrarily—there may be many cycles in the resource graph and we would not be able to tell 

which of the many deadlocked processes “caused” the deadlock. 

Recovery from Deadlock 

There are two options for breaking a deadlock. One solution is simply to abort one or more 

processes to break the circular wait. The second option is to preempt some resources from one or 

more of the deadlocked processes. 

Process Termination 

To eliminate deadlocks by aborting a process, we use one of two methods. In both methods the 

system reclaims all resources allocated to the terminated process. 

 Abort all deadlocked processes: This method clearly will break the deadlock cycle, but at a great 

expense; these processes may have computed for a long time, and the results of these partial 

computations must be discarded and probably recomputed later. 

 Abort one process at a time until the deadlock cycle is eliminated: This method incurs 

considerable overhead since after each process is aborted, a deadlock detection algorithm must be 

invoked to determine whether any processes are still deadlocked. 

Aborting a process may not be so easy. If a process was in the midst of updating a file, terminating 

it will leave the system in an inconsistent state. If the partial termination method is used, then given 

a set of deadlocked processes, we must determine which process should be terminated in an attempt 

to break the deadlock. This determination is a policy decision similar to CPU scheduling problems. 

The question is basically an economic one, we should abort those processes the termination of 

which will incur the minimum cost. 

Resource Preemption 

To eliminate deadlocks using resource preemption, we successively preempt some resources from 

processes and give these to other processes until the deadlock cycle is broken. If preemption is 

required to deal with deadlocks, then three issues need to be addressed: 

1. Selecting a victim: Which resources and which processes are to be preempted? As in process 

termination, we must determine the order of preemption to minimize cost. Cost factors may include 



such parameters as the number of resources a deadlock process is holding, and the amount of time 

a deadlocked process has thus far consumed during its execution. 

2. Rollback: If we preempt a resource from a process, what should be done with that process? 

Clearly, it cannot continue with its normal execution; it is missing some needed resource. We must 

roll back the process to some safe state and restart it from that state. Since, in general it is difficult 

to determine what a safe state is, the simplest solution is a total rollback: Abort the process and 

then restart it. However it is more effective to roll back the process only as far as necessary to 

break the deadlock. On the other hand, this method requires the system to keep more information 

about the state of all the running processes. 

3. Starvation: In a system where victim selection is based primarily on cost factors, it may happen 

that the same process is always picked as the victim. As a result this process never completes its 

designated task, a starvation situation that needs to be dealt with in any practical system. Clearly, 

we must ensure that a process is picked as a victim only a finite number of times. The most 

common solution is to include the number of rollbacks in the cost factor. 

Memory Management 

Basic Concepts 

Memory consists of a large array of words or bytes, each with its own address. The CPU fetches 

instructions from memory according to the value of its program counter and other memory 

management registers such as segment registers in Intel CPUs. These instructions may cause 

additional loading from and storing to specific memory addresses. A typical instruction-execution 

cycle, e.g., first fetches an instruction from memory, which is then decoded and executed. 

Operands may have to be fetched from memory. After the instruction has been executed, the results 

are stored back in memory. The memory unit sees only a stream of memory addresses; it does not 

know how they are generated or what they are for (instructions or data). 

Memory Hierarchy 

The memory hierarchy includes: 

 Very small, extremely fast, extremely expensive, and volatile CPU registers 

 Small, very fast, expensive, and volatile cache 

 Hundreds of megabytes of medium-speed, medium-price, volatile main memory 

 Hundreds of gigabytes of slow, cheap, and non-volatile secondary storage 

 Hundreds and thousands of terabytes of very slow, almost free, and non-volatile Internet storage 

(Web pages, Ftp repositories, etc.) 

Memory Management 

The purpose of memory management is to ensure fair, secure, orderly, and efficient use of memory. 

The task of memory management includes keeping track of used and free memory space, as well 

as when, where, and how much memory to allocate and deallocate. It is also responsible for 

swapping processes in and out of main memory 

Source to Execution 

Translation of a source program in a high-level or assembly language involves compilation and 

linking of the program. This process generates the machine language executable code (also known 



as a binary image) for the give source program. To execute the binary code, it is loaded into the 

main memory and the CPU state is set appropriately. 

Address Binding 

Usually a program resides on a disk as a binary executable or script file. The program must be 

brought into the memory it to be executed. The collection of processes that is waiting on the disk 

to be brought into the memory for execution forms the input queue. The normal procedure is to 

select one of the processes in the input queue and to load that process into the memory. As the 

process is executed, it accesses instructions and data from memory. Eventually the process 

terminates and its memory space is become available for reuse. 

Addresses may be bound in different ways during these steps. Addresses in the source program 

are generally symbolic (such as an integer variable count). Address can be bound to instructions 

and data at different times, as discussed below briefly. 

 Compile time: if you know at compile where the process will reside in memory, the absolute 

addresses can be assigned to instructions and data by the compiler. 

 Load time: if it is not known at compile time where the process will reside in memory, then the 

compiler must generate re-locatable code. In this case the final binding is delayed until load time. 

 Execution time: if the process can be moved during its execution from one memory segment 

to another, then binding must be delayed until run time. Special hardware must be available for 

this to work. 

Logical- Versus Physical-Address Space 

An address generated by the CPU is commonly referred to as a logical address, where as an 

address seen by the memory unit–that is, the one loaded into the memory-address register of the 

memory–is commonly referred to as the physical address. In essence, logical data refers to an 

instruction or data in the process address space where as the physical address refers to a main 

memory location where instruction or data resides. The compile time and load time binding 

methods generate identical logical and physical addresses, where as the execution time binding 

method results in different physical and logical addresses. In this case we refer to the logical 

address as the virtual address. The set of all logical addresses generated by a program form the 

logical address space of a process; the set of all physical addresses corresponding to these logical 

addresses is a physical address space of the process. The total size of physical address space in a 

system is equal to the size of its main memory. The logical address is translated into the 

corresponding physical address by adding the logical address to the value of the relocation register, 

The run-time mapping from virtual to physical addresses is done by a piece of hardware in the 

CPU, called the memory management unit (MMU). 
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Various techniques for memory management 

Dynamic Loading 

To obtain better memory space utilization, we can use dynamic loading. With dynamic loading, 

a routine is not loaded until it is called. All routines are kept on a disk in a re-locatable format. The 

main program is loaded into memory and is executed. When a routine needs to call another routine, 

the calling routine first checks to see whether the other routine has been loaded or not. If not, the 

re-locatable linking loader is called to load the desired routine into the memory and to update the 

program’s address tables to reflect this change. The control is then passed to the newly loaded 

routine. The advantage of dynamic loading is that an unused routine is never loaded. This means 

that potentially less time is needed to load a program and less memory space is required. However 

the run time activity involved in dynamic loading is a disadvantage. Dynamic programming does 

not require special support from the operating system. 

Dynamic Linking and Shared Libraries 

The concept of dynamic linking is similar to that of dynamic loading. Rather than the loading being 

postponed until execution time, linking is postponed until run-time. This feature is usually used 

with system libraries. Without this facility, all programs on a system need to have a copy of their 

language library included in the executable image. This requirement wastes both disk space and 

main memory. With dynamic linking, a stub is included in the image for each library-routine 

reference. This stub is a small piece of code that indicates how to locate the appropriate memory-

resident library routine or how to load the library if the routine is not already present. During 

execution of a process, stub is replaced by the address of the relevant library code and the code is 

executed .If library code is not in memory, it is loaded at this time. Programs linked before the 

new library was installed will continue using the older library. This system is also known as shared 

libraries. Dynamic linking requires potentially less time to load a program. Less disk space is 

needed to store binaries. However it is a time-consuming run-time activity, resulting in slower 

program execution. Dynamic linking requires help from the operating system. 

Overlays 

To enable a process to be larger than the amount of memory allocated to it, we can use overlays. 

The idea of overlays is to keep in memory only those instructions and data that are needed at any 

given time. When other instructions are needed, they are loaded into space occupied previously by 

instructions that are no longer needed. 



 

Swapping 

A process needs to be in the memory to be executed. A process, however, can be swapped 

temporarily out of memory to a backing store, and then brought back into memory for continued 

execution. Backing store is a fast disk large enough to accommodate copies of all memory images 

for all users; it must provide direct access to these memory images. The system maintains a ready 

queue of all processes whose memory images are on the backing store or in memory and are ready 

to run. A variant of this swapping policy can be used for priority-based scheduling algorithms. If 

a higher-priority process arrives and wants service, the memory manger can swap out the lower-

priority process so that it can load and execute the higher- -priority process. When the higher--

priority process finishes, the lower--priority process can be swapped back in and continued. This 

technique is called roll out, roll in. 

 

Contiguous memory allocation 

The main memory must accommodate both operating system and the various user spaces. Thus 

memory allocation should be done efficiently. The memory is usually divided into two partitions: 

one for the resident operating system and one for the user processes. The operating system may be 

placed in the high memory or the low memory. The position of the interrupt vector usually affects 

this decision. Since the interrupt vector is often in the low memory, programmers place the OS in 

low memory too. 

 It is desirable to have several user processes residing in the memory at the same time. In 

contiguous memory allocation, each process is contained in a single contiguous section of memory. 
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The base (re-location) and limit registers are used to point to the smallest memory address of a 

process and its size, respectively. 

Multiprogramming with Fixed Tasks (MFT) 

In this technique, memory is divided into several fixed-size partitions. Each partition may contain 

exactly one process. Thus the degree of multiprogramming is bound by the number of partitions. 

In this multiple partition method, when a partition is free, a process is selected from the input queue 

and is loaded in the free partition. When the process terminates, the partition becomes available 

for another process. 

MFT can have large internal fragmentation, i.e., wasted space inside a Region 

Each process has a single ``segment'' (we will discuss segments later) 

 No sharing between processes. 

 No dynamic address translation. 

 At load time must ``establish addressability''. 

MFT with multiple queues involves load-time address binding. In this technique, there is a 

potential for wasted memory space i.e. an empty partition but no process in the associated queue. 

However in MFT with single queue there is a single queue for each partition. The queue is searched 

for a process when a partition becomes empty. First-fit, best-fit, worst-fit space allocation 

algorithms can be applied here. 

Multiprogramming with Variable Tasks (MVT) 

This is the generalization of the fixed partition scheme. It is used primarily in a batch environment. 

Here are the main characteristics of MVT. 

 Both the number and size of the partitions change with time. 

 Job still has only one segment (as with MFT) but now can be of any size up to the size of the 

machine and can change with time. 

 A single ready list. 

 Job can move (might be swapped back in a different place). 

 This is dynamic address translation (during run time). 

 Must perform an addition on every memory reference (i.e. on every address translation) to add 

the start address of the partition. 

 Eliminates internal fragmentation. 

 Find a region the exact right size (leave a hole for the remainder). 

Introduces external fragmentation, i.e., holes outside any region 

External fragmentation 

As processes come and go, holes of free space are created in the main memory. External 

Fragmentation refers to the situation when free memory space exists to load a process in the 

memory but the space is not contiguous. Compaction eliminates external fragmentation by 

shuffling memory contents (processes) to place all free memory into one large block. The cost of 

compaction is slower execution of processes as compaction takes place. 

Paging 



two Paging is a memory management scheme that permits the physical address space of a process 

to be noncontiguous. It avoids the considerable problem of fitting the various sized memory chunks 

onto the backing store, from which most of the previous memory-management schemes suffered. 

When some code fragments or data residing in main memory need to be swapped out, space must 

be found on the backing store. The fragmentation problems discussed in connection with main 

memory are also prevalent with backing store, except that access is much slower so compaction is 

impossible. Physical memory is broken down into fixed-sized blocks, called frames, and logical 

memory is divided into blocks of the same size, called pages. The size of a page is a power of 2, 

the typical page table size lying between 1K and16K. It is important to keep track of all free frames. 

In order to run a program of size n pages, we find n free frames and load program pages into these 

frames. In order to keep track of a program’s pages in the main memory a page table is used. Thus 

when a process is to be executed, its pages are loaded into any available memory frames from the 

backing store. 

b) Mapping paging in the logical into the frames in the physical address space and keeping this 

mapping in the page table 

Every logical address generated by the CPU is divided into two parts: a page number (p) and a 

page offset (d). The page table contains the base address (frame number) of each page in physical 

memory. The frame number is combined with the page offset to obtain the physical memory 

address of the memory location that contains the object addressed by the corresponding logical 

address. 

Paging itself is a form of dynamic relocation. When we use a paging scheme, we have no external 

fragmentation; however we may have internal fragmentation. 

Addressing in Paging 

The page size is defined by the CPU hardware. If the size of logical address space is 2m and a page 

size is 2n addressing units (bytes or words) , then the high-order m-n bits of a logical address 

designate the page number and the n low order bits designate offset within the page. Thus, the 

logical address is as follows: 

 

Implementation of Page table 

Implementation of Page table 

 In the CPU registers 

This is OK for small process address spaces and large page sizes. It has the advantage of having 

effective memory access time (Teffective) about the same as memory access time (Tmem). 

 In the main memory 

A page table base register (PTBR) is needed to point to the page table. With page table in main 

memory, the effective memory access time, Teffective, is 2Tmem , which is not acceptable because 

it would slow down program execution by a factor of two. 



 In the translation look-aside buffer (TLB) 

A solution to this problem is to use special, small, fast lookup hardware, called translation look-

aside buffer (TLB), which typically has 64–1024 entries. Each entry is (key, value). The key is 

searched for in parallel; on a hit, value is returned. The (key,value) pair is (p,f) for paging. For a 

logical address, (p,d), TLB is searched for p. If an entry with a key p is found, we have a hit and f 

is used to form the physical address. Else, page table in the main memory is searched. 

 

Protection under Paging 

Memory protection in paging is achieved by associating protection bits with each page. These bits 

are associated with each page table entry and specify protection on the corresponding page. The 

primary protection scheme guards against a process trying to access a page that does not belong to 

its address space. This is achieved by using a valid/invalid (v) bit. This bit indicates whether the 

page is in the process address space or not. If the bit is set to invalid, it indicates that the page is 

not in the process’s logical address space. Illegal addresses are trapped by using the valid-invalid 

bit and control is passed to the operating system for appropriate action. One bit can define the page 

table to be read and write or read only. Every reference to memory goes through the page table to 

find the correct frame number. At the same time that the physical address is being computed, the 

protection bits can be checked to verify that no writes are being made to a read only page. An 

attempt to write to a read-only page causes a hardware trap to the operating system (memory-

protection violation). 

Structure of the Page Table 

As logical address spaces become large (32-bit or 64-bit), depending on the page size, page table 

sizes can become larger than a page and it becomes necessary to page the page the page table. 

Additionally, large amount of memory space is used for page table. The following schemes allow 

efficient implementations of page tables. 

 Hierarchical / Multilevel Paging 

 Hashed Page Table 

 Inverted Page Table 

Hierarchical/Multilevel Paging 
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Most modern computers support a large logical address space: (232 to 264). In such an environment, 

the page table itself becomes excessively large. This page table cannot fit in one page. One solution 

is to page the page table, resulting in a 2-level paging. A page table needed for keeping track of 

pages of the page table— called the outer page table or page directory. In the 32-bit machine 

described above, we need to partition p into two parts, p1 and p2. p1 is used to index the outer 

page table and p2 to index the inner page table. Thus the logical address is divided into a page 

number consisting of 20 bits and a page offset of 12 bits. Since we page the page table, the page 

number is further divided into a 10-bit page number, and a 10-bit page offset. This is known as 

two-level paging. 

Hashed Page Table 

This is a common approach to handle address spaces larger then 32 bits .Usually open hashing is 

used. Each entry in the linked list has three fields: page number, frame number for the page, and 

pointer to the next element—(p, f, next). The page number in the logical address (specified by p) 

is hashed to get index of an entry in the hash table. This index is used to search the linked list 

associated with this entry to locate the frame number corresponding to the given page number. The 

advantage of hashed page tables is smaller page tables. 

Inverted Page Table 

Usually each process has a page table associated with it. The page table has one entry for each 

page in the address space of the process. For large address spaces (32-bit and above), each page 

table may consist of millions of entries. These tables may consume large amounts of physical 

memory, which is required just to keep track of how the mapping of logical address spaces of 

processes onto the physical memory. A solution is to use an inverted page table. An inverted page 

table has one entry for each real page (frame) of memory. Each entry consists of the virtual address 

of the page stored in the in that real memory location, with information about the process that own 

the page. 

Sharing in Paging 

Another advantage of paging is the possibility of sharing common code. Reentrant (readonly) code 

pages of a process address can be shared. If the code is reentrant, it never changes during execution. 

Thus two or more processes can execute the same code at the same time. Each process has its own 

copy of registers and data storage to hold the data for the process’ execution. The data for two 

different processes will, of course, vary for each process. 

Segmentation 

Segmentation is a memory management scheme that supports programmer’s view of memory. A 

logical-address space is a collection of segments. A segment is a logical unit such as: main 

program, procedure, function, method, object, global variables, stack, and symbol table. Each 

segment has a name and length. The addresses specify both the segment name and the offset within 

the segment. a logical address consists of a two tuple: 

<segment-number, offset> or <s,d> 

The segment table maps the two-dimensional logical addresses to physical addresses. Each entry 

of a segment table has a base and a segment limit. The segment base contains the starting physical 



address where the segment resides in memory, whereas the segment limit specifies the length of 

the segment. 

There are two more registers, relevant to the concept of segmentation: 

 Segment-table base register (STBR) points to the segment table’s location in memory. 

 Segment-table length register (STLR) indicates number of segments used by a program. 

Sharing of Segments 

Another advantage of segmentation is sharing of code or data. Each process has a segment table 

associated with it, which the dispatcher uses to define the hardware segment table when this 

process is given the CPU. Segments are shared when entries in the segment tables of two different 

processes point o the same physical location. The sharing occurs at segment level, thus, any 

information defined as a segment can be shared. 

The long-term scheduler must find and allocate memory for all the segments of a user program. 

This situation is similar to paging except that the segments are of variable length; pages are all the 

same size. Thus memory allocation is a dynamic storage allocation problem, usually solved with 

a best fit or worst fit algorithm. 

Protection 

A particular advantage of segmentation is the association of protection with segments. Because 

the segments represent a semantically defined portion of the program, it is likely that ll the entries 

will be used the same way. Hence, some segments are instructions, whereas other segments are 

data. In a modern architecture, instructions are non-self modifying so they can be defined as read 

only. Or execute only. The memory mapping hardware will check the protection bits associated 

with each segment-table entry top prevent illegal access to memory, such as attempts to write into 

a read only segment. The bits associated with each entry in the segment table, for the purpose of 

protection are: 

 Validation bit : if the validation bit is 0, it indicates an illegal segment 

 Read, write, execute bits 

Issues with Segmentation 

Segmentation may then cause external fragmentation (i.e. total memory space exists to satisfy a 

space allocation request for a segment, but memory space is not contiguous), when all blocks of 

memory are too small to accommodate a segment. In this case, the process may simply have to 

wait until more memory (or at least a larger hole) becomes 178 available or until compaction 

creates a larger hole. Since segmentation is by nature a dynamic relocation algorithm, we can 

compact memory whenever we want. If we define each process to be one segment, this approach 

reduces to the variable sized partition scheme. T the other extreme, every byte could be put in its 

own segment and relocated separately. This eliminates external fragmentation altogether, however 

every byte would need a base register for its relocation, doubling memory use. The next logical 

step- fixed sized, small segments, is paging i.e. paged segmentation. 

Paged Segmentation 



In paged segmentation, we divide every segment in a process into fixed size pages. We need to 

maintain a page table per segment CPU’s memory management unit must support both 

segmentation and paging. 

address translation in the protected 

mode. 

Protected Mode 

 248 bytes virtual address space 

 232 bytes linear address space 

 Max segment size = 4 GB 

 Max segments / process = 16K 

 Six CPU registers allow access to six segments at a time 

 Selector is used to index a segment descriptor table to obtain an 8-byte segment descriptor entry. 

Base address and offset are added to get a 32-bit linear address, which is partitioned into p1, p2, and d 

for supporting 2-level paging. 

Virtual Memory Basic Concept 

An examination of real programs shows that in many cases the existence of the entire program in 

memory is not necessary: 

 Programs often have code to handle unusual error conditions. Since these errors seldom occur 

in practice, this code is almost never executed. 

 Arrays, lists and tables are often allocated more memory than they actually need. 

 Certain options of a program may be used rarely. 

Even in cases where the entire program is needed, it may not be all needed at the same time. The 

ability to execute a program that is only partially in memory confers many benefits. 

 A program would no longer be constrained by the amount of physical memory that is available. 

Users would be able to write programs for an extremely large virtual address space simplifying 

the programming task. 

 Because each user program could take less physical memory, more programs could be run at 

the same time, with a corresponding increase in CPU utilization and throughput with no increase 

in response time or turnaround time. 

 Less I/O would be needed to load or swap each user program into memory, so each user program 

would run faster. 

Virtual Memory is the separation of user logical memory from physical memory. This 

separation allows an extremely large virtual memory to be provided for programmers when only 

a smaller physical memory is available. Virtual memory makes the task of programming easier 

because the programmer need not worry about the amount of physical memory, or about what code 

can be placed in overlays; she can concentrate instead on the problem to be programmed. In 

addition to separating logical memory from physical memory, virtual memory also allows files 

and memory to be shared by several different processes through page sharing. The sharing of pages 

further allows performance improvements during process creation. Virtual memory is commonly 



implemented as demand paging. It can also be implemented in a segmentation system. One benefit 

of virtual memory is efficient process creation. Yet another is the concept of memory mapped files. 

Demand Paging 

A demand paging system is similar to a paging system with swapping. Processes reside on 

secondary memory (which is usually a disk). When we want to execute a process, we swap it into 

memory. Rather than swapping the entire process into memory, however we use a lazy swapper. 

A lazy swapper never swaps a page into memory unless that page will be needed. Since we are 

now viewing a process as a sequence of pages rather than as one large contiguous address space, 

use of swap is technically incorrect. A swapper manipulates entire processes, whereas a pager is 

concerned with the individual pages of a process. Thus the term pager is used in connection with 

demand paging. 

Page Fault 

But what happens if the process tries to access a page that was not brought into memory? Access 

to a page marked invalid causes a page fault trap. The paging hardware in translating the address 

through the page table will notice that the invalid bit is set, causing a trap to the operating system. 

This trap is the result of the operating system’s failure to bring the desired page into memory (in 

an attempt to minimize disk transfer overhead and memory requirements) rather than an invalid 

address error as a result of an attempt to use an illegal memory address. The procedure for handling 

a page fault is straightforward: 

1. We check an internal table (usually kept with the process control block) for this process to 

determine whether the reference was valid or invalid memory access. 

2. If the reference was invalid we terminate the process. If it was valid, but we have not yet brought 

in that page, we now page it in. 

3. We find a free frame (by taking one from the free-frame list, for example) 

4. We schedule a disk operation to read the desired page into the newly allocated frame. 

5. When the disk read is complete, we modify the internal table kept with the process and the page 

table to indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the illegal address trap. The process can now 

access the page as though it had always been in memory. 

Page Fault 

But what happens if the process tries to access a page that was not brought into memory? Access 

to a page marked invalid causes a page fault trap. The paging hardware in translating the address 

through the page table will notice that the invalid bit is set, causing a trap to the operating system. 

This trap is the result of the operating system’s failure to bring the desired page into memory (in 

an attempt to minimize disk transfer overhead and memory requirements) rather than an invalid 

address error as a result of an attempt to use an illegal memory address. The procedure for handling 

a page fault is straightforward: 

1. We check an internal table (usually kept with the process control block) for this process to 

determine whether the reference was valid or invalid memory access. 
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2. If the reference was invalid we terminate the process. If it was valid, but we have not yet brought 

in that page, we now page it in. 

3. We find a free frame (by taking one from the free-frame list, for example) 

4. We schedule a disk operation to read the desired page into the newly allocated frame. 

5. When the disk read is complete, we modify the internal table kept with the process and the page 

table to indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the illegal address trap. The process can now 

access the page as though it had always been in memory. 

In addition to this hardware, additional architectural constraints must be imposed. A crucial one is 

the need to be able to restart any instruction after a page fault. In most cases this is easy to meet, a 

page fault occurs while we are fetching an operand, we must fetch and decode the instruction 

again, and then fetch the operand. A similar problem occurs in machines that use special addressing 

modes, including auto increment and auto decrement modes. These addressing modes use a 

register as a pointer and automatically increment or decrement the register. Auto decrement 

automatically decrements the register before using its contents as the operand address; auto 

increment increments the register after using its contents. Thus the instruction 

MOV (R2) +, -(R3) 

Copies the contents of the location pointed to by register2 into that pointed to by register3. Now 

consider what will happen if we get a fault when trying to store into the location pointed to by 

register3. To restart the instruction we must reset the two registers to the values they had before 

we started the execution of the instruction 

Performance of demand paging 

A page fault causes the following sequence to occur: 

1. Trap to the operating system 

2. Save the user registers and process states 

3. Determine that the interrupt was a page fault 

4. Check that the page reference was legal and determine the location of the page on disk 

5. Issue a read from the disk to a free frame: 

a. Wait in a queue for this device until the read request is serviced 

b. Wait for the device seek and/or latency time 

c. Begin the transfer of the page to a free frame 

6. While waiting, allocate the CPU to some other user (CU scheduling; optimal) 

7. Interrupt from the disk (I/O completed) 

8. Save the registers and process state for the other user (if step 6 is executed) 

9. Determine that the interrupt was from the disk 

10. Correct the page table and other tables to show that the desired page is now in memory 

11. Wait for the CPU to be allocated to this process again 

12. Restore the user registers, process state and new page table 

In any case we are faced with three major components of the page fault service 

time: 



1. Service the page fault interrupt 

2. Read in the page 

3. Restart the process 

It is important to keep the slowdown due to paging to a reasonable level, we can allow only less 

than one memory access out of 2,500,000 to page fault. It is important to keep the page fault rate 

low in a demand-paging system. Otherwise the effective access time increases, slowing process 

execution dramatically. One additional aspect of demand paging is the handling and overall use of 

swap space. Disk I/O to swap space is generally faster than that to the file system. It is faster 

because swap space is allocated in much larger blocks, and file lookups and indirect allocation 

methods are not used. It is therefore possible for the system to gain better paging throughput by 

copying an entire file image into the swap space at process startup and then performing demand 

paging from the swap space. Another option is to demand pages from the from the file system 

initially, but to write the pages to swap space as they are replaced. This approach will ensure that 

only needed pages are ever read from the file system, but all subsequent paging is done from swap 

space. 

Performance of Demand Paging with Page Replacement 

When there is no free frame available, page replacement is required, and we must select the pages 

to be replaced. This can be done via several replacement algorithms, and the major criterion in the 

selection of a particular algorithm is that we want to minimize the number of page faults. The 

victim page that is selected depends on the algorithm used, it might be the least recently used page, 

or the most frequently used etc depending on the algorithm. 

Process Creation and Virtual Memory 

Paging and virtual memory provide other benefits during process creation, such as copy on write 

and memory mapped files. 

Copy on Write fork() 

Demand paging is used when reading a file from disk into memory and such files may include 

binary executables. However, process creation using fork() may bypass initially the need for 

demand paging by using a technique similar to page sharing. This technique provides for rapid 

process creation and minimizes the number of new pages that must be allocated to newly created 

processes. 

Recall the fork() system call creates a child process as a duplicate of its parent. 

Traditionally fork() worked by creating a copy of the parent’s address space for the child, 

duplicating the pages belonging to the parent. However, considering that many child processes 

invoke the exec() system call immediately after creation, the copying of the parent’s address space 

may be unnecessary. Alternatively we can use a technique known as copy on write. This works by 

allowing the parent and child processes to initially share the same pages. These shared pages are 

marked as copy-on-write pages, meaning that if either process writes to a shared page, a copy of 

the shared page is created. Using the copy-on-write technique it is obvious that only the pages that 

are modified by either process are copied; all non modified pages may be shared by the parent and 

the child processes. Note that only pages that may be modified are marked as copy-on-write. Pages 
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that cannot be modified (i.e. pages containing executable code) may be shared by the parent and 

the child. 

When it is determined a page is gong to be duplicated using copy-on-write it is important to note 

where the free page will be allocated from. Many operating systems provide a pool of free pages 

for such requests. These free pages are typically allocated when the stack or heap for a process 

must expand or for managing copy-on-write pages. Operating systems typically allocate these 

pages using a technique known as zero-fill-ondemand. Zero-fill-on-demand pages have been 

zeroed out before allocating, thus deleting the previous contents on the page. With copy-on-write 

the page being copied will be copied to a zero-filled page. Pages allocated for the stack or heap 

are similarly assigned zero-filled pages. 

vfork() 

Several versions of UNIX provide a variation of the fork() system call—vfork() (for virtual 

memory fork). vfork() operates differently than fork() with copy on write. With vfork() the parent 

process is suspended and the child process uses the address space of the parent. Because vfork() 

does not use copy-on-write, if the child process changes any pages of the parent’s address space, 

the altered pages will be visible to the parent once it resumes. Therefore, vfork() must be used with 

caution, ensuring that the child process does not modify the address space of the parent. 

Linux Implementation 

In Linux, shared pages are marked read-only after fork(). If either process tries to modify a shared 

page, a page fault occurs and the page is copied. The other process (who later faults on write) 

discovers it is the only owner; so no copying takes place. In other words, Linux implementation 

of fork() is based on the “copy-on-write” semantics. 

Memory Mapped files 

Consider a sequential read of a file on disk using the standard system calls open(), read(), write(). 

Every time the file is accessed requires a system call and disk access. Alternatively we can use the 

virtual memory techniques discussed so far to treat file I/O as routine memory accesses. This 

approach is known as memory mapping a file, allowing a part of the virtual address space to be 

logically associated with a file. Memory mapping a file is possible by mapping a disk block to a 

page (or pages) in memory. Initial access to the file proceeds using ordinary demand paging 

resulting in a page fault. However, a page sized portion of the file is read from the file system into 

a physical page. Subsequent reads and writes to the file are handled as routine memory accesses, 

thereby simplifying file access and usage by allowing file manipulation through memory rather 

than the overhead of using the read() and write() system calls. 

Memory-Mapped Files in Solaris 2 

Some operating systems provide memory mapping only through a specific system call and treat 

all other file I/O using the standard system calls. However, some systems choose to memory map 

a file regardless of whether a file was specified as a memory map or not. For example: Solaris 2 

treats all file I/O as memory mapped, allowing file access to take place in memory, whether a file 

has been specified as memory mapped using mmap() system call or not. 

mmap() System Call 



In a UNIX system, mmap() system call can be used to request the operating system to memory 

map an opened file. 

Page replacement 

While a user process is executing, a page fault occurs. The hardware traps to the operating system, 

which checks its internal tables to see that this page is a genuine one rather than an illegal memory 

access. The operating system determines where the desired page is residing on the disk, but then 

finds that there are no free frames on the free frame list: All memory is in use. This means that if 

no free frame is available on a page fault, we replace a page in memory to load the desired page. 

The page-fault service routine is modified to include page replacement. We can free a frame by 

writing its contents to swap space, and changing the page table to indicate that the page is no longer 

in memory. The modified page fault service routine is: 

1. Find the location of the desired page on the disk 

2. Find a free frame 

a) If there is a free frame use it. 

b) If there is no free frame, use a page replacement algorithm to select a victim frame. 

3. Read the desired page into the newly freed frame; change the page and frame tables. 

4. Restart the user process. 

We can reduce overhead by using a modify bit (or dirty bit). Each page or frame may have a modify 

bit associated with it in hardware. The modify bit is set by the hardware whenever any word or 

byte in the page is written into, indicating that the page has been modified. When we select a page 

for replacement we examine it’s modify bit. If the bit is set, we know that the page has been 

modified since it was read in from the disk. In this case we must write that page to the disk. If the 

modify bit is not set however, the page has not been modified since it was read into memory, and 

hence we can avoid writing that page to disk. 

Page Replacement Algorithms 

In general we want a page replacement algorithm with the lowest page-fault rate. We evaluate an 

algorithm by running it on a particular string of memory references (reference string) and 

computing the number of page faults on that string. 

FIFO Page Replacement 

The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replacement algorithm 

associates with each page the time when that page was brought into memory. When a page must 

be replaced, the oldest page is chosen. Notice that it is not strictly necessary to record the time 

when a page is brought in. We can create a FIFO queue to hold all pages in memory. We replace 

the page at the head of the queue. When a page is brought into memory we insert t at the tail of the 

queue. The problem with this algorithm is that it suffers from Belady’s anomaly: For some page 

replacement algorithms the page fault rate may increase as the number of allocated frames 

increases, whereas we would expect that giving more memory to a process would improve its 

performance. 

Optimal Algorithm 



An optimal page-replacement algorithm has the lowest page fault rate of all algorithms, and will 

never suffer from the Belay’s algorithm. This algorithm is simply to replace the page that will not 

be used for the longest period of time. Use of this algorithm guarantees the lowest possible page-

fault rate for a fixed number of frames. 

LRU Page Replacement 

If we use the recent past as an approximation of the near future, then we will replace the page that 

has not been used for the longest period of time. This approach is the least recently used algorithms. 

An LRU page replacement may require substantial hardware assistance. The problem is to 

determine an order for the frames defined by the time of last use. Two implementations are 

feasible: 

Counter-based Implementation of LRU 

In the simplest case we associate with each page table entry a time-of-use field and add to the CPU 

a logical clock or counter. The clock is incremented for every memory reference. Whenever a 

reference to a page is made, the contents of the clock register are copied to the time-of-use field in 

the page entry for that page. In that way we always have the time of the last reference to each page. 

We replace the page that has the smallest time value. This scheme requires a search of the page 

table to find the LRU page and a write to memory for each memory access. The times must also 

be maintained when page tables are changed. Overflow of the clock must be considered. 

Stack-based Implementation of LRU 

Another approach to implementing the LRU algorithm is to keep a stack of page numbers. 

Whenever a page is referenced, it is removed from the stack and put on top. In this way, the top of 

the stack is always the most recently used page and the bottom is the LRU page. Because entities 

must be removed from the middle of the stack, it is best implementing by a doubly linked list with 

a head and tail pointer. Removing a page and putting it on the top of the stack then requires 

changing six pointers at worst. Each update is a little more expensive, but there is no search for a 

replacement the tail pointer points to the bottom of the stack which is the LRU page. 

Belady’s Anomaly 

This is due to the Belady’s Anomaly which states that “For some page replacement algorithms, 

the page fault rate may increase as the number of allocated frames increases.” 

Stack Replacement Algorithms 

These are a class of page replacement algorithms with the following property: Set of pages in the 

main memory with n frames is a subset of the set of pages in memory with n+1 frames. 

These algorithms do not suffer from Belady’s Anomaly. An example is the LRU algorithm. 

LRU Approximation Algorithm 

Few computer systems provide sufficient hardware support for true LRU page replacement. Some 

systems provide no hardware support and other page replacement algorithms must be used. Many 

systems provide some help however, in the form of a reference bit. The reference bit for a page is 

set by the hardware whenever that page is referenced. Reference bits are associated with each entry 

in the page table. Initially all bits are cleared by the operating system. As a user process executes 
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the bit associated with each page referenced is set to 1 by the hardware. After some time we can 

determine which pages have been used and which have not been used by examining the reference 

bits. We do not know the order of use however, but we know which pages were used and which 

were not used. 

Least frequently used algorithm 

This algorithm is based on the locality of reference concept— the least frequently used page is not 

in the current locality. LFU requires that the page with the smallest count be replaced. The reason 

for this selection is that an actively used page should have a large reference count. This algorithm 

suffers from the situation in which a page is used heavily during the initial phase of a process, but 

then is never used again. Since it was used heavily it has a large count and remains in memory 

even though it is no longer needed. One solution is to shift the counts right by 1 bit at regular 

intervals, forming an exponentially decaying average user count. 

Most Frequently Used 

The MFU page replacement algorithm is based on the argument that the page with the smallest 

count was probably just brought in and has yet to be used; it will be in the locality that has just 

started. 

Page Buffering Algorithm 

The OS may keep a pool of free frames. When a page fault occurs a victim page is chosen as 

before. However the desired page is read into a free frame from the pool before the victim is written 

out. This allows the process to restart as soon as possible, without waiting for the victim to be 

written out. When the victim is later written out, its frame is added to the free frame pool. Thus a 

process in need can be given a frame quickly and while victims are selected, free frames are added 

to the pool in the background An expansion of this idea is to maintain a list of modified pages. 

Whenever the paging device is idle, a modified page is selected and is written to disk. Its modify 

bit is then reset. This scheme increases the probability that a page will be clean when it is selected 

for replacement and will not need to be written out. Another modification is to keep a pool of free 

frames, but to remember which page was in which frame. Since the frame contents are not modified 

when a frame is written to disk, the old page can be reused directly from the free-frame pool if it 

is needed before that frame is reused. 

Local vs Global Replacement 

If process P generates a page fault, page can be selected in two ways: 

 Select for replacement one of its frames. 

 Select for replacement a frame from a process with lower priority number. 

Global replacement allows a process to select a replacement frame from the set of all frames, even 

if that frame belongs to some other process; one process can take a frame from another. Local 

replacement requires that each process select from only its allocated frames. 

Allocation of frames 

Each process needs a minimum number of frames so that its execution may be guaranteed on a 

given machine. Let’s consider the MOV X,Y instruction. The instruction is 6 bytes long (16-bit 

offsets) and might span 2 pages. Also, two pages to handle source and two pages are required to 
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handle destination (assuming 16-bit source and destination). There are three major allocation 

schemes: 

 Fixed allocation 

In this scheme free frames are equally divided among processes 

 Proportional Allocation 

Number of frames allocated to a process is proportional to its size in this scheme.  

 Priority allocation 

Priority-based proportional allocation 

Thrashing 

If a process does not have “enough” pages, the page-fault rate is very high. This leads to low CPU 

utilization. The operating system thinks that it needs to increase the degree of multiprogramming, 

because it monitors CPU utilization and find it to be decreasing due to page faults. Thus another 

process is added to the system and hence thrashing occurs and causes throughput to plunge. A 

process is thrashing if it is spending more time paging (i.e., swapping pages in and out) than 

executing. Thrashing results in severe performance problems: 

 Low CPU utilization 

 High disk utilization 

 Low utilization of other I/O devices 

as the degree of multiprogramming increases CPU utilization also increases, although more 

slowly, until a maximum is reached. If the degree of multiprogramming is increased further, 

thrashing sets in and CPU utilization drops sharply. At this point we must decrease the degree of 

multiprogramming. We can limit the effects of thrashing by using a local replacement scheme. 

With local replacement if one process starts thrashing it cannot steal frames from another process 

and cause the latter to thrash also. Pages are replaced with regard to the process of which they are 

a part. Hence local page replacement prevents thrashing to spread among several processes. 

However if processes are thrashing, they will be in the queue for the paging device most of the 

time. The average service time for a page fault will increase and effective access time will increase 

even for a process that is not thrashing. If a process does not have enough frames, it will quickly 

page fault. At this point, if a free frame is not available, one of its pages must be replaced so that 

the desired page can be loaded into the newly vacated frame. However since all its pages are in 

active use, the replaced page will be needed right away. Consequently it quickly faults again and 

again. The process continues to fault, replacing pages for which it then faults and brings back in 

right away. This high paging activity is called thrashing. In this case, only one process is 

thrashing. A process is thrashing if it is spending more time paging than executing. Thrashing 

results on severe performance problems. The operating system monitors CPU utilization and, if 

CPU utilization is too low, the operating system increases the degree of multiprogramming by 

introducing one or more new processes to the system. This decreases the number of frames 

allocated to each process currently in the system, causing more page faults and further decreasing 

the CPU utilization. This causes the operating system to introduce more processes into the system. 

As a result CPU utilization drops even further and the CPU scheduler tries to increase the degree 



of multiprogramming even more. Thrashing has occurred and system throughput plunges. The 

page fault rate increases tremendously. As a result the effective memory access time increases. 

Along with low CPU utilization, there is high disk utilization. There is low utilization of other I/O 

devices. No work is getting done, because the processes are spending all their time paging and the 

system spend most of its time servicing page fault. Now the whole system is thrashing—the CPU 

utilization plunges to almost zero, the paging disk utilization becomes very high, and utilization 

of other I/O devices becomes very low. 

Thus in order to stop thrashing, the degree of multiprogramming needs to be reduced. The effects 

of thrashing can be reduced by using a local page replacement. With local replacement if one 

process starts thrashing it cannot steal frames from another process and cause the latter to thrash 

also. Pages are replaced with regard to the process if which they are a part. However, if processes 

are thrashing they will be in the queue for the paging device most of the time. The average service 

time for a page fault will increase due to the longer average queue for the paging device. Thus the 

effective access time will increase even for a process that is not thrashing, since a thrashing process 

is consuming more resources. 

Locality of Reference 

The locality model states that as a process executes it moves from locality to locality. A locality is 

a set of pages that are actively used together. A program is generally composed of several different 

localities, which may overlap. 

Working Set Model 

The working set model is based on the assumption of locality. This model uses a parameter Δ to 

define the working set window. The idea is to examine the most recent Δ page references. The set 

of pages in the most recent Δ page references is called the working set. If a page is in active use it 

will be in the working set. If it no longer being used it will drop from the working set Δ time units 

after its last reference. Thus the working set is an approximation of the program’s locality. 

The difficulty with the working set model is to keep track of the working set. The working set 

window is a moving size window. At each memory reference a new reference appears at one end 

and the oldest reference drops off the other end. We can approximate the working set model with 

a fixed interval timer interrupt and a reference bit. 

Page Fault Frequency 

Page fault frequency is another method to control thrashing. Since thrashing has a high page fault 

rate, we want to control the page fault frequency. When it is too high we know that the process 

needs more frames. Similarly if the page-fault rate is too low, then the process may have too many 

frames. The operating system keeps track of the upper and lower bounds on the page-fault rates of 

processes. If the page-fault rate falls below the lower limit, the process loses frames. If page-fault 

rate goes above the upper limit, process gains frames. Thus we directly measure and control the 

page fault rate to prevent thrashing. 

Other considerations 

Many other things can be done to help control thrashing. We discuss some of the important ones 

in this section. 
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Pre-paging 

An obvious property of a pure demand paging system is the large number of page faults that occur 

when a process is started. This situation is the result of trying to get the initial locality into memory. 

Pre-paging is an attempt to prevent this high level of initial paging. The strategy is to bring into 

memory at one time all the pages that will be needed. Pre-paging may be an advantage in some 

cases. The question is simply whether the cost of using pre-paging is less than the cost of the 

servicing the corresponding page faults. 

Page Size 

How do we select a page size? One concern is the size of the page table. For a given virtual memory 

space, decreasing the page size increases the number of pages and hence the size of the page table. 

Because each active process must have its own copy of the page table, a large page size is desirable. 

On the other hand, memory is better utilized with smaller pages. If a process is allocated memory 

starting at location 00000, and continuing till it has as much as it needs, it probably will not end 

exactly on a page boundary. Thus, a part of the final page must be allocated. This causes internal 

fragmentation and to minimize this, we need a small page size. Another problem is the time 

required to read or write a page. I/O time is composed of seek, latency and transfer times. Transfer 

time is proportional to the amount transferred,  and this argues for a small page size. However, 

latency and seek times usually dwarf transfer times, thus a desire to minimize I/O times argues for 

a larger page size. I/O overhead is also reduced with small page size because locality improves. 

This is because a smaller page size allows each page to match program locality more accurately.   

Some factors (internal fragmentation, locality) argue for a small page size, whereas others (table 

size, I/O time) argue for a large page size. There is no best answer. However the historical trend is 

towards larger pages. 

Program Structure 

Demand paging is designed to be transparent to the user program. However, in some cases system 

performance can be improved if the programmer has an awareness of the underlying demand 

paging and execution environment of the language used in the program. 

Which of the following will improve CPU utilization? 

 Install a faster CPU 

 Increase degree of multiprogramming 

 Decrease degree of multiprogramming 

 Install more main memory 

Clearly, the system is thrashing, so the first two are not going to help and the last two will help. 

Think about the reasons of this answer. 

2. Which of the following programming techniques and structures are “good” 

for a demand paged environment? Which are bad? Explain your answer. 

 Stack 

 Hash table 

 Sequential search 
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 Binary search 

 Indirection 

 Vector operations 

You should try to answer this question on your own. Focus on how the given data structures and 

techniques access data. Sequential access means “good” for demand paging (because it causes 

less page faults) and non-sequential access means “bad” for demand paging environment. 

The File Concept 

A file is a named collection of 

related information that is recorded on secondary storage. Data cannot be written to secondary 

storage unless they are within a file. Commonly, files represent programs (source and object forms) 

and data. Data files may be numeric, alphabetic, alphanumeric or binary. In essence it is a 

contiguous logical address space. 

File Structure 

A file has certain defined structure characteristics according to its type. A few common types of 

file structures are: 

None – file is a sequence of words, bytes 

Simple record structure 

Lines 

Fixed length 

Variable length 

Complex Structures 

Formatted document 

Relocatable load file 

 

UNIX considers each file to be a sequence of bytes; no interpretation of these bytes is made by the 

OS. This scheme provides maximum flexibility but little support. 

File Attributes 

Every file has certain attributes, which vary from one OS to another, but typically consist of these: 

Name: The symbolic file name is the only information kept in human-readable form 

Type: This information is needed for those systems that support different types. 

Location: This location is a pointer to a device and to the location of the file on that device. 

Size: The current size of the file (in bytes, words or blocks) and possibly the maximum allowed 

size are included in this attribute. 

Protection: Access control information determines who can do reading , writing, etc. 

Owner 

Time and date created: useful for security, protection and usage monitoring. 

Time and date last updated: useful for security, protection and usage monitoring. 

Read/write pointer value 

Where are Attributes Stored? 



File attributes are stored in the directory structure, as part of the directory entry for a file, e.g., in 

DOS, Windows, or in a separate data structure; in UNIX/Linux this structure is known as the inode 

for the file. 

Directory Entry 

A file is represented in a directory by its directory entry. Contents of a directory entry vary from 

system to system. For example, in DOS/Windows a directory entry consists of file name and its 

attributes. In UNIX/Linux, a directory entry consists of file name and inode number. 

File Operations 

Various operations can be performed on files. Here are some of the commonly supported 

operations. In parentheses are written UNIX/Linux system calls for the corresponding operations. 

 Create (creat) —two steps are necessary to create a file. First, space must be found for the 

file in the file system. Second, an entry for the new file must be made in the directory. 

 Open (open) — The open operation takes a file name and searches the directory, copying the 

directory entry into the open-file table. 

 Write (write) —To write to a file, we make a system call, specifying both the name of the 

file and the information to be written to the file. Given the name of the file, the system searches 

the directory to find the location of the file. The system must keep a write pointer to the location 

in the file where the next write is to take place. 

 Read (read) — To read from a file we use a system call that specifies the name of the file, 

and where (in memory) the next block of the file should be put. The system needs top keep a read 

pointer to the location in the file where the next read is to take place. The current pointer location 

is kept as a process current-file-position pointer. Both read and write use the same pointer 

 Reposition within file (lseek) — A directory is searched for the appropriate entry and the 

current-file-position is set to a given value. This is often known as a file seek. 

 Delete (unlink) — Search the directory for the named file, and then release the file space 

and erase the directory entry. File can be deleted using the unlink system call. 

 Truncate (creat) — A user may want to erase the contents of the file but keep its attributes. 

This function allows all attributes to be unchanged except for file length., which is set to zero and 

file space is released. This can be achieved using creat with a special flag 

 Close (close) — When a file is closed, the OS removes its entry in the open-file table. 

File Types: Extensions 

A common technique for implementing files is to include the type of the file as part of the file 

name. The name is split into two parts, a name and an extension, usually separated by a period 

character. In this way, the user and the OS can tell from the name alone, what the type of a file is. 

The operating system uses the extension to indicate the type of the file and the type of operations 

that can be done on that file. In DOS/Windows only a file with .exe, .com, .bat extension can be 

executed. 

The UNIX system uses a crude magic number stored at the beginning of some files to indicate 

roughly the type of the file-executable program, batch file/shell script, etc. Not all files have magic 



numbers, so system features cannot be based solely on this type of information. UNIX does allow 

file name extension hints, but these extensions are not enforced or depended on by the OS; they 

are mostly to aid users in determining the type of contents of the file. 

File Types in UNIX 

UNIX does not support supports seven types of file: 

 Ordinary file: used to store data on secondary storage device, e.g., a source program(in C), 

an executable program. Every file is a sequence of bytes. 

 Directory: contains the names of other files and/or directories. 

 Block-special file: correspond to block oriented devices such as a disk. They are used to access 

such hardware devices. 

 Character-special file: correspond to character oriented devices, such as keyboard 

 Link file (created with the ln –s command): is created by the system when a symbolic link 

is created to an existing file, allowing you to rename the existing file and share it without 

duplicating its contents without 

 FIFO (created with the mkfifo or mknod commands or system calls): enable processes to 

communicate with each other. A FIFO(name pipe) is an area in the kernel that allows two processes 

to communicate with each other provided they are running on the same system , but the processes 

do not have to be related to each other. 

 Socket (in BSD-compliant systems—socket): can be used by the process on the same computer 

or on different computers to communicate with each other. 

File Access 

Files store information that can be accessed in several ways: 

Sequential Access 

Information in the file is processed in order, one record after the other. A read operation reads the 

next potion of the file and automatically advances a file pointer which tracks the I/O location. 

Similarly, a write operation appends to the end of the file and advances to the end of the newly 

written material. Such a file can be rest to the beginning and on some systems; a program may be 

able to skip forward or backward, n records. 

Direct Access 

A file is made up of fixed length logical record that allow program to read and write records in no 

particular order. For the direct-access method, the file operations must be modified to include the 

block number as a parameter (read n (n = relative block number), write n for instance). An alternate 

approach is to retain read next and write next and to add an operation, position file to n, where n 

is the block number. The block number provided by the user to the OS is normally a relative block 

number, an index relative to the beginning of the file. 

Directory Structure 

It is a collection of directory entries. To manage all the data, first disks are split into one or more 

partitions. Each partition contains information about files within it. This information is kept within 

device directory or volume table of contents. 



Directory Operations 

The following directory operations are commonly supported in contemporary operating systems. 

Next to each operation are UNIX system calls or commands for the corresponding operation. 

 Create — mkdir 

 Open — opendir 

 Read — readdir 

 Rewind — rewinddir 

 Close — closedir 

 Delete — rmdir 

 Change Directory — cd 

 List — ls 

 Search 

Directory Structure 

When considering a particular directory structure we need to consider the following issues: 

1. Efficient Searching 

2. Naming – should be convenient to users 

 Two users can have same name for different files 

 The same file can have several different names 

3. Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, ..) 

Single-Level Directory 

All files are contained in the same directory, which is easy to support and understand. However 

when the number of files increases or the system has more than one user, it has limitations. Since 

all the files are in the same directory, they must have unique names. 

Two-Level Directory 

There is a separate directory for each user. When a user refers to a particular file, only his own 

user file directory (UFD) is 

searched. Thus different users can have the same file name as long as the file names within each 

UFD are unique. This directory structure allows efficient searching. However, this structure 

effectively isolates one user from another, hence provides no 

grouping capability. 

Tree Directory 

Here is the tree directory structure. Each user has his/her own directory (known as user’s home 

directory) under which he/she can create a complete directory tree of his/her own. The tree has a 

root directory. Every file in the system has a unique pathname. A path name is the path from the 

root, through al the subdirectories to a specified file. A directory/subdirectory contains a set of 

files or subdirectories. In normal use, each user has a current directory. The current directory 

should contain most of the files that are of current interest to the user. When a reference to a file 

is made, the current directory is searched. If a file is needed that is not in the current directory, 
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then the user must either specify a path name or change the directory to the directory holding the 

file( using the cd system call). 

UNIX / Linux Notations and Concepts 

• Root directory (/) 

• Home directory 

o ~, $HOME, $home 

o cd ~ 

o cd 

• Current/working directory (.) 

o pwd 

• Parent of Current Directory (..) 

• Absolute Pathname 

o Starts with the root directory 

o For example, /etc, /bin, /usr/bin, /etc/passwd, /home/students/ibraheem 

• Relative Pathname 

o Starts with the current directory or a user’s home directory 

o For example, ~/courses/cs604, ./a.out 

Acyclic-Graph Directories 

A tree structure prohibits sharing of files. An acyclic graph allows directories to have shared 

subdirectories and files. The same file may be in two different directories. A shared file is not the 

same as two copies of the file. Only one actual copy exists, so any changes made by one user are 

immediately visible to the other. A common way of implementing shared files and directories is 

to create a new directory entry called a link, which is effectively a pointer to another file or 

subdirectory. A link can be implemented as an absolute or relative path name. Another problem 

involves deletion. If the file is removed when anyone deletes it, we may end up with dangling 

pointers to the now-nonexistent file. Solutions: Another approach is to preserve the file until all 

references to it are deleted. When a link or a copy of the directory entry is establishes, a new entry 

is added to the file-reference list. When a link is deleted, we remove its entry on the list. The file 

is deleted when its file-reference list is empty. Since the reference list can be very large we can 

keep a count of the number of references. A new link or directory increments the reference count, 

deleting a link or entry decrements the count. When the count is 0, the file can be deleted. UNIX 

uses this solution for hard links. Backpointers can also be maintained so we can delete all pointers. 

One serious problem with using an acyclic-graph structure is ensuring that there are no cycles. A 

solution is to allow only links to files not subdirectories. Also every time a new link is added use 

a cycle detection algorithm to determine whether it is OK. If cycles are allowed, we want to avoid 

searching any component twice. A similar problem exists when we are trying to determine when 

a file can be deleted. A value of 0 in the reference count means no more references to the 

file/directory can be deleted. 

Links in UNIX 



UNIX supports two types of links: 

 Hard links 

 Soft (symbolic) links 

The ln command is used to create both links, ln –s is used to create a soft link 

 ln [options] existing-file new-file 

 ln [options] existing-file-list directory 

File System Mounting 

A file system is best visualized as a tree, rooted at /. /dev, /etc, /usr, and other directories in the 

root directory are branches, which may have their own branches, such as /etc/passwd, /usr/local, 

and /usr/bin. Filling up the root file system is not a good idea, so splitting /var from / is a good 

idea. 

File System Mounting 

A file system is best visualized as a tree, rooted at /. /dev, /etc, /usr, and other directories in the 

root directory are branches, which may have their own branches, such as /etc/passwd, /usr/local, 

and /usr/bin. Filling up the root file system is not a good idea, so splitting /var from / is a good 

idea. 

Mounting in UNIX 

All files accessible in a Unix system are arranged in one big tree, the file hierarchy, rooted at /. 

These files can be spread out over several devices. The mount command serves to attach the file 

system found on some device to the big file tree. Conversely, the umount command will detach it 

again. Here is the syntax of the mount command mount -t type device dir 

This command tells the kernel to attach the file system found on device (which is of type type) at 

the directory dir. The previous contents (if any) and owner and mode of dir become invisible. As 

long as this file system remains mounted, the pathname dir refers to the root of the file system on 

device. 

File Sharing 

Sharing of files on multi-user systems is desirable. People working on the same project need to 

share information. For instance: software engineers working on the same project need to share files 

or directories related to the project Sharing may be done through 

 Duplicating files: Make copies of the file and give them to all team members. This scheme 

works well if members of the team are to work on these shared files sequentially. If they work on 

the files simultaneously, the copies become inconsistent and no single copy reflects the works done 

by all members. However it is simple to implement. 

 Common login for members of a team: The system admin creates a new user group and gives 

the member access to the new account. All files and directories created by any team member under 

this account and are owned by the team. This works well if number of teams is small and teams 

are stable. However a separate account is needed for the current project and the system 

administrator has to create a new account for every team 

 Setting appropriate access permissions. Team members put all shared files under one 

member’s account and the access permissions are set so all the members can access it. This scheme 



works well if only this team’s members form the user group. File access permissions can be 

changed using the chmod system call: 

Protection 

The need to protect files is a direct result of the ability to access files. Systems that do not permit 

access to the files of other users do not need protection. Thus we could provide complete protection 

by prohibiting access. Alternatively we could provide free access with no protection. Both 

approaches are too extreme for general use. What is needed is controlled access. File owner/creator 

should be able to control 

 What can be done 

 By whom 

Several types of operations may be controlled: 

 Read: read from the file 

 Write: write or rewrite to the file 

 Execute: Load the file into memory and execute it 

 Append: Write new information at the end of the file 

 Delete: Delete the file and free its space for possible reuse 

 List: List the name and attributes of the file 

UNIX Protection 

UNIX recognizes three modes of access: read, write, and execute (r, w, x). The execute 

permission on a directory specifies permission to search the directory. The three classes of users 

are: 

 Owner: user is the owner of the file 

 Group: someone who belongs to the same group as the owner 

 Others: everyone else who has an account on the system 

A user’s access to a file can be specified by an octal digit. The first bit of the octal digit specifies 

the read permission, the second bit specifies the write permission, and the third bit specifies the 

execute permission. A bit value 1 indicates permission for access and 0 indicates no permission. 

Default Permissions 

The default permissions on a UNIX/Linux system are 777 for executable files and directories and 

666 for text files. You can use the umask command to set permission bits on newly created files 

and directories to 1, except for those bits that are set to 1 in the ‘mask’. You can use the chmod 

command to set permissions on existing files and 

directories. 
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File Control Block 

A file control block is a memory data structure that contains most of the attributes of a file. In 

UNIX, this data structure is called inode (for index node). 

In-Memory Data Structures 

The following upper-level data structures needed for file system support. 

 An in-memory partition table containing information about each mounted partition 

 An in-memory directory structure that holds the directory information of recently accessed 

directories 

 The system-wide open file table contains pointer to the FCB (UNIX inode) of each open file 

as well as read/write pointer 

 The FCB for each open file 

 The per process file descriptor table contains a pointer to the appropriate entry in the system 

wide open file table as well as other information 

Space Allocation Methods 

We now turn to some file system implementation issues, in particular space allocation techniques 

and free space management methods. Here are the three commonly used methods for file space 

allocation. 

 Contiguous allocation 

 Linked allocation 

 Indexed allocation 

Contiguous Allocation 

The contiguous allocation method requires each file to occupy a set of contiguous blocks on the 

disk. The directory entry for each file contains starting block number and file size (in blocks). Disk 

addresses define a linear ordering on the disk. With this ordering, assuming only one job is 
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accessing the disk, accessing b+1 block after block b normally requires no head movement. When 

head movement is needed it is only one track. Both sequential and direct access can be supported 

by contiguous allocation. For direct access to block I of a file that starts at block b we can 

immediately access block b+i. Best-fit, first-fit, or worst-fit algorithms are the strategies used to 

select a hole from the set of available holes. Neither first fit, nor best fit is clearly best in terms of 

both time and storage utilization, but first fit is generally faster. These algorithms suffer from the 

problem of external fragmentation. As files are allocated or deleted, the free disk is broken into 

little pieces. This situation results in external fragmentation of disk (similar to external 

fragmentation of main memory due to segmentation). Disk defragmenter utility needs to be used 

for removing external fragmentation. 

Linked Allocation 

Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk. The directory 

contains a pointer to the first and last blocks of the file. There is no external fragmentation with 

linked allocation, and any free block on the free-space list can be used to satisfy a request. There 

is no wastage of space. However, a major disadvantage with linked allocation is that it can be used 

only for sequential access files. To find the ith block of a file, we must start at the beginning of 

that file and follow the pointers until we get back to the ith block. Consequently it is inefficient to 

support a direct access capability for linked allocation files. 

Index Allocation 

Indexed allocation brings all the pointers to the block together into a disk block, known as the 

index block. Each file has its own index block, which is an array of disk block addresses. The ith 

entry in the index block points to the ith block of the file. The directory contains the address of the 

index block. To read the ith block, we use the pointer in the ith index-block entry to find and read 

the desired block Indexed allocation supports direct access without suffering from external 

fragmentation because any free block on the disk may satisfy a request for more space. Depending 

on the disk block size and file system size, a file may need more than one index block. In this case 

there are two ways of organizing index blocks: 

Linked scheme (linked list of index blocks) 

An index block is normally one disk block. Thus, it can be read and written directly by itself. To 

allow for large files, we may link together several index blocks. 

Multi-level index scheme 

The second method of handling multiple index blocks is to maintain multi-level indexing. 

UNIX Space Allocation 

The UNIX file manager uses a combination of indexed allocation and linked lists for the index 

table. It maintains 10-15 direct pointers to file blocks, and three indirect pointers (one-level 

indirect, two-level indirect, and three-level indirect), all maintained in file’s inode, 

File Allocation Table (FAT) 

The file system on an MS-DOS floppy disk is based on file allocation table (FAT) file system in 

which the disk is divided into a reserved area (containing the boot program) and the actual file 



allocation tables, a root directory and file space. Space allocated for files is represented by values 

in the allocation table, which effectively provide a linked list of all the blocks in the file. Each 

entry is indexed by a block number and value in a table location contains block number for the 

next file block. First block number for a file is contained in file’s directory entry. Special values 

designate end of file, unallocated and bad blocks. 

Free-Space Management 

Since disk space is limited, we need to reuse the space from deleted files for new files if possible. 

To keep track of free disk space, the system maintains a free-space list. The free space list records 

all free disk blocks-those not allocated to some file or directory. To create a file we search the free-

space list for the required amount of space and allocate the space to the new file. This space is then 

removed from the free-space list. When a file is deleted, its disk space is added to the free space 

list. 

Bit vector 

Frequently, the free space list is implemented as a bit map or bit vector. Each block is represented 

by 1 bit. If the block is free, the bit is 1;if it is allocated, the bit is 0. This approach is relatively 

simple and efficient in finding the first free block or n consecutive free blocks on the disk. 

Linked list (free list) 

Another approach to free space management is to link together all the free disk blocks, keeping a 

pointer to the first free block in a special location on the disk and caching it in memory. The first 

block contains a pointer to the next free disk block and so on. However this scheme is not efficient. 

To traverse the list, we must read each block, which requires substantial I/O time. It cannot get 

contiguous space easily. 

Grouping 

A modification of free-list approach is to store the addresses of n free blocks in the first free block. 

The first n-1 blocks of these blocks are actually free. The last block contains addresses of the next 

n free blocks, and so on. The importance of this implementation is that the addresses of a large 

number of free blocks can be found quickly. 

Counting 

We keep the address of the first free block and the number n of free contiguous blocks that follow 

the first block in each entry of a block. This scheme is good for contiguous allocation. Although 

each entry requires more space, the overall list will be shorter. 

I/O Operations 

A number of I/O operations (inserting, deleting, and reading a file block) needed for the various 

allocation schemes indicate the goodness of these schemes. 

Secondary Storage Management 

The following diagram shows the hierarchy of three kernel modules used for mapping user view 

of directory structure, free space management, file I/O, and secondary storage management. We 

have discussed some details of the top-most layer. We will not discuss details of the I/O system. 



 

Three layers of file OS kernel used for managing user view of files, file operations, and file storage 

to disk 

Disk Structure 

Disks provide the bulk of secondary storage for modern computer systems. Magnetic tape was 

used as an early secondary storage medium but the access is much slower than for disks. Thus 

tapes are currently used mainly for backup, for storage of infrequently used information etc. 

Modern disk drives are addressed as large one dimensional array of logical blocks, where the 

logical block is the smallest unit of transfer. The size of a logical block is usually 512 bytes, 

although some disks can be low-level formatted to choose a different logical block size, such as 

1024 bytes. The one dimensional array of logical blocks is mapped onto the sectors of the disk 

sequentially. Block 0 is the first sector of the first track on the outermost sector. The mapping 

proceeds in order through that track, then through the rest of the tracks in that cylinder, and then 

through the rest of the cylinders from outermost to the innermost. 

Disk Scheduling 

One of the responsibilities of the operating system is to use the computer system hardware 

efficiently. For the disk drives, meeting this responsibility entails having a fast access time and 

disk bandwidth. The access time has two major components. The seek time is the time for the disk 

arm to move the heads to the cylinder containing the desired sector. The rotational latency is the 

additional time waiting for the disk to rotate the desired sector to the disk head. The disk bandwidth 

is the total number of bytes transferred, divided by the total time between the first request for 

service and the completion of the last transfer. We can improve both the access time and the 

bandwidth by scheduling the servicing of disk I/O requests in a good order. Some of the popular 

disk-scheduling algorithms are: 

 First-come-first-serve (FCFS) 

 Shortest seek time first (SSTF) 

 Scan 

 Look 

 Circular scan (C-Scan) 

 Circular look (C-Look) 

First Come First Served Scheduling 



The simplest form of disk scheduling is FCFS. This algorithm is intrinsically fair, but it generally 

does not provide the fastest service. 

SSTF Scheduling 

It seems reasonable to service all the requests close to the current head position, before moving 

the head far away to service other requests. This assumption is the basis for the shortest seek time 

first (SSTF) algorithm. The SSTF algorithm selects the request with the minimum seek time from 

the current head position. Since seek time increases with the number of cylinders traversed by the 

head, SSTF chooses the pending request closest to the current head position. 

Scan 

In the Scan algorithm the disk arm starts at one end of the disk, and moves toward the other end, 

servicing requests as it reaches each cylinder, until it gets to the other end of the disk. At the other 

end, the direction of head movement is reversed and servicing continues. The head continuously 

scans back and forth across the disk. 

Look algorithm 

This algorithm is a version of SCAN. In this algorithm the arm only goes as far as the last request 

in each direction, then reverses direction immediately, serving requests while going in the other 

direction. That is, it looks for a request before continuing to move in a given direction. For the 

given reques queue, the total head movement (seek distance) for the Look algorithm is 208. 

C-Scan and C-Look algorithms 

In the C-Scan and C-Look algorithms, when the disk head reverses its direction, it moves all the 

way to the other end, without serving any requests, and then reverses again and starts serving 

requests. In other words, these algorithms serve requests in only one direction. 
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