
Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

What is C++?

C++ is a cross-platform language that can be used to create high-performance applications.

C++ was developed by Bjarne Stroustrup, as an extension to the C language.

C++ gives programmers a high level of control over system resources and memory.

The language was updated 3 major times in 2011, 2014, and 2017 to C++11, C++14, and
C++17.

Why Use C++

C++ is one of the world's most popular programming languages.

C++ can be found in today's operating systems, Graphical User Interfaces, and embedded
systems.

C++ is an object-oriented programming language which gives a clear structure to programs and
allows code to be reused, lowering development costs.

C++ is portable and can be used to develop applications that can be adapted to multiple
platforms.

C++ is fun and easy to learn!

As C++ is close to C# and Java, it makes it easy for programmers to switch to C++ or vice versa

Get Started

This tutorial will teach you the basics of C++.

It is not necessary to have any prior programming experience.

C++ Get Started

To start using C++, you need two things:

 A text editor, like Notepad, to write C++ code

 A compiler, like GCC, to translate the C++ code into a language that the computer will
understand

https://www.w3schools.com/cs/default.asp
https://www.w3schools.com/java/default.asp

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

There are many text editors and compilers to choose from. In this tutorial, we will use an IDE
(see below).

C++ Install IDE

An IDE (Integrated Development Environment) is used to edit AND compile the code.

Popular IDE's include Code::Blocks, Eclipse, and Visual Studio. These are all free, and they can
be used to both edit and debug C++ code.

Note: Web-based IDE's can work as well, but functionality is limited.

We will use Code::Blocks in our tutorial, which we believe is a good place to start.

You can find the latest version of Codeblocks at http://www.codeblocks.org/downloads/26.
Download the mingw-setup.exe file, which will install the text editor with a compiler.

C++ Quickstart

Let's create our first C++ file.

Open Codeblocks and go to File > New > Empty File.

Write the following C++ code and save the file as myfirstprogram.cpp (File > Save File as):

myfirstprogram.cpp

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 return 0;

}

Don't worry if you don't understand the code above - we will discuss it in detail in later chapters.

For now, focus on how to run the code.

In Codeblocks, it should look like this:

http://www.codeblocks.org/downloads/26

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Then, go to Build > Build and Run to run (execute) the program. The result will look
something to this:

Hello World!

Process returned 0 (0x0) execution time : 0.011 s

Press any key to continue.

Congratulations! You have now written and executed your first C++ program.

When learning C++ at W3Schools.com, you can use our "Run Example" tool, which shows both
the code and the result. This will make it easier for you to understand every part as we move
forward:

myfirstprogram.cpp

Code:

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 return 0;

}

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Result:

Hello World!

C++ Syntax

Let's break up the following code to understand it better:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 return 0;

}

Run example »

Example explained

Line 1: #include <iostream> is a header file library that lets us work with input and output

objects, such as cout (used in line 5). Header files add functionality to C++ programs.

Line 2: using namespace std means that we can use names for objects and variables from the

standard library.

Don't worry if you don't understand how #include <iostream> and using namespace std works.

Just think of it as something that (almost) always appears in your program.

Line 3: A blank line. C++ ignores white space.

Line 4: Another thing that always appear in a C++ program, is int main(). This is called

a function. Any code inside its curly brackets {} will be executed.

Line 5: cout (pronounced "see-out") is an object used together with the insertion operator (<<)
to output/print text. In our example it will output "Hello World".

Note: Every C++ statement ends with a semicolon ;.

Note: The body of int main() could also been written as:

int main () { cout << "Hello World! "; return 0; }

Remember: The compiler ignores white spaces. However, multiple lines makes the code more
readable.

Line 6: return 0 ends the main function.

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_helloworld

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Line 7: Do not forget to add the closing curly bracket } to actually end the main function.

Omitting Namespace

You might see some C++ programs that runs without the standard namespace library. The using
namespace std line can be omitted and replaced with the std keyword, followed by

the :: operator for some objects:

Example

#include <iostream>

int main() {

 std::cout << "Hello World!";

 return 0;

C++ Output (Print Text)

The cout object, together with the << operator, is used to output values/print text:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 return 0;

}

Run example »

You can add as many cout objects as you want. However, note that it does not insert a new line

at the end of the output:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 cout << "I am learning C++";

 return 0;

}

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_output

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

C++ Comments

Comments can be used to explain C++ code, and to make it more readable. It can also be used
to prevent execution when testing alternative code. Comments can be singled-lined or multi-
lined.

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by the compiler (will not be executed).

This example uses a single-line comment before a line of code:

Example

// This is a comment

cout << "Hello World!";

Run example »

This example uses a single-line comment at the end of a line of code:

Example

cout << "Hello World!"; // This is a comment

Run example »

C++ Multi-line Comments

Multi-line comments start with /* and ends with */.

Any text between /* and */ will be ignored by the compiler:

Example

/* The code below will print the words Hello World!

to the screen, and it is amazing */

cout << "Hello World!";

Run example »

C++ Variables

Variables are containers for storing data values.

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_single_comment
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_single_comment_end
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_multi_comment

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

In C++, there are different types of variables (defined with different keywords), for example:

 int - stores integers (whole numbers), without decimals, such as 123 or -123

 double - stores floating point numbers, with decimals, such as 19.99 or -19.99

 char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single

quotes

 string - stores text, such as "Hello World". String values are surrounded by double

quotes

 bool - stores values with two states: true or false

Declaring (Creating) Variables

To create a variable, you must specify the type and assign it a value:

Syntax

type variable = value;

Where type is one of C++ types (such as int), and variable is the name of the variable (such

as x or myName). The equal sign is used to assign values to the variable.

To create a variable that should store a number, look at the following example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;

cout << myNum;

Run example »

You can also declare a variable without assigning the value, and assign the value later:

Example

int myNum;

myNum = 15;

cout << myNum;

Run example »

Note that if you assign a new value to an existing variable, it will overwrite the previous value:

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_variables_int
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_variables_int2

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Example

int myNum = 15; // myNum is 15

myNum = 10; // Now myNum is 10

cout << myNum; // Outputs 10

Run example »

Other Types

A demonstration of other data types:

Example

int myNum = 5; // Integer (whole number without decimals)

double myFloatNum = 5.99; // Floating point number (with decimals)

char myLetter = 'D'; // Character

string myText = "Hello"; // String (text)

bool myBoolean = true; // Boolean (true or false)

You will learn more about the individual types in the Data Types chapter.

Display Variables

The cout object is used together with the << operator to display variables.

To combine both text and a variable, separate them with the << operator:

Example

int myAge = 35;

cout << "I am " << myAge << " years old.";

Run example »

Add Variables Together

To add a variable to another variable, you can use the + operator:

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_variables_int3
https://www.w3schools.com/cpp/cpp_data_types.asp
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_variables_display

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Example

int x = 5;

int y = 6;

int sum = x + y;

cout << sum;

C++ Data Types

As explained in the Variables chapter, a variable in C++ must be a specified data type:

Example

int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99; // Floating point number

double myDoubleNum = 9.98; // Floating point number

char myLetter = 'D'; // Character

bool myBoolean = true; // Boolean

string myText = "Hello"; // String

Run example »

Basic Data Types

The data type specifies the size and type of information the variable will store:

Data Type Size Description

int 4 bytes Stores whole numbers, without decimals

float 4 bytes Stores fractional numbers, containing one or more decimals. Sufficient for

storing 7 decimal digits

double 8 bytes Stores fractional numbers, containing one or more decimals. Sufficient for

storing 15 decimal digits

https://www.w3schools.com/cpp/cpp_variables.asp
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_data_types

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

boolean 1 byte Stores true or false values

char 1 byte Stores a single character/letter/number, or ASCII values

You will learn more about the individual data types in the next chapters.

C++ Exercises

Test Yourself With Exercises

Exercise:

Add the correct data type for the following variables:

 myNum = 9;

 myDoubleNum = 8.99;

 myLetter = 'A';

 myBool = false;

 myText = "Hello World";

C++ Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

int x = 100 + 50;

Run example »

Although the + operator is often used to add together two values, like in the example above, it

can also be used to add together a variable and a value, or a variable and another variable:

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Example

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

Run example »

C++ divides the operators into the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Operator Name Description Example Try it

+ Addition Adds together two values x + y Try it »

- Subtraction Subtracts one value from another x - y Try it »

* Multiplication Multiplies two values x * y Try it »

/ Division Divides one value by another x / y Try it »

% Modulus Returns the division remainder x % y Try it »

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper2
https://www.w3schools.com/cpp/cpp_operators.asp#arithmetic
https://www.w3schools.com/cpp/cpp_operators_assignment.asp
https://www.w3schools.com/cpp/cpp_operators_comparison.asp
https://www.w3schools.com/cpp/cpp_operators_logical.asp
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_add
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_sub
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_mult
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_div
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_mod

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

++ Increment Increases the value of a variable by 1 ++x Try it »

-- Decrement Decreases the value of a variable by 1 --x Try it »

C++ Exercises

Test Yourself With Exercises

Exercise:

Multiply 10 with 5, and print the result.

cout << 10 5;

C++ Conditions and If Statements

C++ supports the usual logical conditions from mathematics:

 Less than: a < b
 Less than or equal to: a <= b

 Greater than: a > b
 Greater than or equal to: a >= b
 Equal to a == b

 Not Equal to: a != b

You can use these conditions to perform different actions for different decisions.

C++ has the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is true

 Use else to specify a block of code to be executed, if the same condition is false

 Use else if to specify a new condition to test, if the first condition is false

 Use switch to specify many alternative blocks of code to be executed

The if Statement

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_inc
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_oper_dec

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Use the if statement to specify a block of C++ code to be executed if a condition is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error.

In the example below, we test two values to find out if 20 is greater than 18. If the condition
is true, print some text:

Example

if (20 > 18) {

 cout << "20 is greater than 18";

}

Run example »

We can also test variables:

Example

int x = 20;

int y = 18;

if (x > y) {

 cout << "x is greater than y";

}

Run example »

Example explained

In the example above we use two variables, x and y, to test whether x is greater than y (using
the > operator). As x is 20, and y is 18, and we know that 20 is greater than 18, we print to the

screen that "x is greater than y".

C++ Switch Statements

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression) {

 case x:

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_if
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_if2

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

This is how it works:

 The switch expression is evaluated once

 The value of the expression is compared with the values of each case

 If there is a match, the associated block of code is executed

 The break and default keywords are optional, and will be described later in this chapter

The example below uses the weekday number to calculate the weekday name:

Example

int day = 4;

switch (day) {

 case 1:

 cout << "Monday";

 break;

 case 2:

 cout << "Tuesday";

 break;

 case 3:

 cout << "Wednesday";

 break;

 case 4:

 cout << "Thursday";

 break;

 case 5:

 cout << "Friday";

 break;

 case 6:

 cout << "Saturday";

 break;

 case 7:

 cout << "Sunday";

 break;

}

// Outputs "Thursday" (day 4)

Run example »

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_switch

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

The break Keyword

When C++ reaches a break keyword, it breaks out of the switch block.

This will stop the execution of more code and case testing inside the block.

When a match is found, and the job is done, it's time for a break. There is no need for more
testing.

A break can save a lot of execution time because it "ignores" the execution of all the rest of the

code in the switch block.

The default Keyword

The default keyword specifies some code to run if there is no case match:

Example

int day = 4;

switch (day) {

 case 6:

 cout << "Today is Saturday";

 break;

 case 7:

 cout << "Today is Sunday";

 break;

 default:

 cout << "Looking forward to the Weekend";

}

// Outputs "Looking forward to the Weekend"

C++ Loops

Loops can execute a block of code as long as a specified condition is reached.

Loops are handy because they save time, reduce errors, and they make code more readable.

C++ While Loop

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

The while loop loops through a block of code as long as a specified condition is true:

Syntax

while (condition) {

 // code block to be executed

}

In the example below, the code in the loop will run, over and over again, as long as a variable
(i) is less than 5:

Example

int i = 0;

while (i < 5) {

 cout << i << "\n";

 i++;

}

C++ For Loop

When you know exactly how many times you want to loop through a block of code, use
the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++) {

 cout << i << "\n";

}

Run example »

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_for_loop

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the condition is
true, the loop will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been executed.

Another Example

This example will only print even values between 0 and 10:

Example

for (int i = 0; i <= 10; i = i + 2) {

 cout << i << "\n";

}

C++ Break

You have already seen the break statement used in an earlier chapter of this tutorial. It was

used to "jump out" of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when i is equal to 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 cout << i << "\n";

}

Run example »

C++ Continue

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_break

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and

continues with the next iteration in the loop.

This example skips the value of 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 cout << i << "\n";

}

C++ Arrays

Arrays are used to store multiple values in a single variable, instead of declaring separate

variables for each value.

To declare an array, define the variable type, specify the name of the array followed by square
brackets and specify the number of elements it should store:

string cars[4];

We have now declared a variable that holds an array of four strings. To insert values to it, we

can use an array literal - place the values in a comma-separated list, inside curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Access the Elements of an Array

You access an array element by referring to the index number.

This statement accesses the value of the first element in cars:

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

cout << cars[0];

// Outputs Volvo

Run example »

Note: Array indexes start with 0: [0] is the first element. [1] is the second element, etc.

Change an Array Element

To change the value of a specific element, refer to the index number:

Example

cars[0] = "Opel";

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

cars[0] = "Opel";

cout << cars[0];

// Now outputs Opel instead of Volvo

Run example »

Creating Pointers

You learned from the previous chapter, that we can get the memory address of a variable by
using the & operator:

Example

string food = "Pizza"; // A food variable of type string

cout << food; // Outputs the value of food (Pizza)

cout << &food; // Outputs the memory address of food (0x6dfed4)

Run example »

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_array
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_array_change
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_pointer_ref

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

A pointer however, is a variable that stores the memory address as its value.

A pointer variable points to a data type (like int or string) of the same type, and is created with

the * operator. The address of the variable you're working with is assigned to the pointer:

Example

string food = "Pizza"; // A food variable of type string

string* ptr = &food; // A pointer variable, with the name ptr, that stores the address

of food

// Output the value of food (Pizza)

cout << food << "\n";

// Output the memory address of food (0x6dfed4)

cout << &food << "\n";

// Output the memory address of food with the pointer (0x6dfed4)

cout << ptr << "\n";

Run example »

Example explained

Create a pointer variable with the name ptr, that points to a string variable, by using the

asterisk sign * (string* ptr). Note that the type of the pointer has to match the type of the

variable you're working with.

Use the & operator to store the memory address of the variable called food, and assign it to the

pointer.

Now, ptr holds the value of food's memory address.

Tip: There are three ways to declare pointer variables, but the first way is preferred:

string* mystring; // Preferred

string *mystring;

string * mystring;

C++ Exercises

Test Yourself With Exercises

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_pointer

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Exercise:

Create a pointer variable with the name ptr, that should point to a string variable named food:

string food = "Pizza";

 = & ;

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

Functions are used to perform certain actions, and they are important for reusing code:
Define the code once, and use it many times.

Create a Function

C++ provides some pre-defined functions, such as main(), which is used to execute code. But

you can also create your own functions to perform certain actions.

To create (often referred to as declare) a function, specify the name of the function, followed by
parentheses ():

Syntax

void myFunction() {

 // code to be executed

}

Example Explained

 myFunction() is the name of the function

 void means that the function does not have a return value. You will learn more about

return values later in the next chapter

 inside the function (the body), add code that defines what the function should do

Call a Function

Declared functions are not executed immediately. They are "saved for later use", and will be
executed later, when they are called.

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

To call a function, write the function's name followed by two parentheses () and a semicolon ;

In the following example, myFunction() is used to print a text (the action), when it is called:

Example

Inside main, call myFunction():

// Create a function

void myFunction() {

 cout << "I just got executed!";

}

int main() {

 myFunction(); // call the function

 return 0;

}

// Outputs "I just got executed!"

Run example »

A function can be called multiple times:

Example

void myFunction() {

 cout << "I just got executed!\n";

}

int main() {

 myFunction();

 myFunction();

 myFunction();

 return 0;

}

// I just got executed!

// I just got executed!

// I just got executed!

Run example »

Function Overloading

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_functions
https://www.w3schools.com/cpp/showcpp.asp?filename=demo_functions_multiple

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

With function overloading, multiple functions can have the same name with different
parameters:

Example

int myFunction(int x)

float myFunction(float x)

double myFunction(double x, double y)

Consider the following example, which have two functions that add numbers of different type:

Example

int plusFuncInt(int x, int y) {

 return x + y;

}

double plusFuncDouble(double x, double y) {

 return x + y;

}

int main() {

 int myNum1 = plusFuncInt(8, 5);

 double myNum2 = plusFuncDouble(4.3, 6.26);

 cout << "Int: " << myNum1 << "\n";

 cout << "Double: " << myNum2;

 return 0;

}

Run example »

Instead of defining two functions that should do the same thing, it is better to overload one.

In the example below, we overload the plusFunc function to work for both int and double:

Example

int plusFunc(int x, int y) {

 return x + y;

}

double plusFunc(double x, double y) {

 return x + y;

}

int main() {

 int myNum1 = plusFunc(8, 5);

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_function_overloading

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

 double myNum2 = plusFunc(4.3, 6.26);

 cout << "Int: " << myNum1 << "\n";

 cout << "Double: " << myNum2;

 return 0;

}

C++ What is OOP?

OOP stands for Object-Oriented Programming.

Procedural programming is about writing procedures or functions that perform operations on the
data, while object-oriented programming is about creating objects that contain both data and
functions.

Object-oriented programming has several advantages over procedural programming:

 OOP is faster and easier to execute

 OOP provides a clear structure for the programs

 OOP helps to keep the C++ code DRY "Don't Repeat Yourself", and makes the code
easier to maintain, modify and debug

 OOP makes it possible to create full reusable applications with less code and shorter
development time

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the repetition of code. You
should extract out the codes that are common for the application, and place them at a single
place and reuse them instead of repeating it.

C++ What are Classes and Objects?

Classes and objects are the two main aspects of object-oriented programming.

Look at the following illustration to see the difference between class and objects:

class

Fruit

objects

Apple

Banana

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Mango

Another example:

class

Car

objects

Volvo

Audi

Toyota

So, a class is a template for objects, and an object is an instance of a class.

When the individual objects are created, they inherit all the variables and functions from the
class.

You will learn much more about classes and objects in the next chapter.

C++ Classes/Objects

C++ is an object-oriented programming language.

Everything in C++ is associated with classes and objects, along with its attributes and methods.
For example: in real life, a car is an object. The car has attributes, such as weight and color,
and methods, such as drive and brake.

Attributes and methods are basically variables and functions that belongs to the class. These
are often referred to as "class members".

A class is a user-defined data type that we can use in our program, and it works as an object
constructor, or a "blueprint" for creating objects.

https://www.w3schools.com/cpp/cpp_classes.asp

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

Create a Class

To create a class, use the class keyword:

Example

Create a class called "MyClass":

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

Example explained

 The class keyword is used to create a class called MyClass.
 The public keyword is an access specifier, which specifies that members (attributes

and methods) of the class are accessible from outside the class. You will learn more
about access specifiers later.

 Inside the class, there is an integer variable myNum and a string variable myString. When

variables are declared within a class, they are called attributes.

 At last, end the class definition with a semicolon ;.

Create an Object

In C++, an object is created from a class. We have already created the class named MyClass, so

now we can use this to create objects.

To create an object of MyClass, specify the class name, followed by the object name.

To access the class attributes (myNum and myString), use the dot syntax (.) on the object:

Example

Create an object called "myObj" and access the attributes:

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

https://www.w3schools.com/cpp/cpp_access_specifiers.asp

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

int main() {

 MyClass myObj; // Create an object of MyClass

 // Access attributes and set values

 myObj.myNum = 15;

 myObj.myString = "Some text";

 // Print attribute values

 cout << myObj.myNum << "\n";

 cout << myObj.myString;

 return 0;

}

Run example »

Multiple Objects

You can create multiple objects of one class:

Example

// Create a Car class with some attributes

class Car {

 public:

 string brand;

 string model;

 int year;

};

int main() {

 // Create an object of Car

 Car carObj1;

 carObj1.brand = "BMW";

 carObj1.model = "X5";

 carObj1.year = 1999;

 // Create another object of Car

 Car carObj2;

 carObj2.brand = "Ford";

 carObj2.model = "Mustang";

 carObj2.year = 1969;

 // Print attribute values

 cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n";

 cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n";

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_object_attr

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

 return 0;

}

Constructors

A constructor in C++ is a special method that is automatically called when an object of a class
is created.

To create a constructor, use the same name as the class, followed by parentheses ():

Example

class MyClass { // The class

 public: // Access specifier

 MyClass() { // Constructor

 cout << "Hello World!";

 }

};

int main() {

 MyClass myObj; // Create an object of MyClass (this will call the constructor)

 return 0;

}

Run example »

Note: The constructor has the same name as the class, it is always public, and it does not have

any return value.

Constructor Parameters

Constructors can also take parameters (just like regular functions), which can be useful for
setting initial values for attributes.

The following class have brand, model and year attributes, and a constructor with different

parameters. Inside the constructor we set the attributes equal to the constructor parameters
(brand=x, etc). When we call the constructor (by creating an object of the class), we pass

parameters to the constructor, which will set the value of the corresponding attributes to the
same:

Example

class Car { // The class

 public: // Access specifier

 string brand; // Attribute

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_constructor

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

 string model; // Attribute

 int year; // Attribute

 Car(string x, string y, int z) { // Constructor with parameters

 brand = x;

 model = y;

 year = z;

 }

};

int main() {

 // Create Car objects and call the constructor with different values

 Car carObj1("BMW", "X5", 1999);

 Car carObj2("Ford", "Mustang", 1969);

 // Print values

 cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n";

 cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n";

 return 0;

}

Run example »

Just like functions, constructors can also be defined outside the class. First, declare the
constructor inside the class, and then define it outside of the class by specifying the name of the
class, followed by the scope resolution :: operator, followed by the name of the constructor

(which is the same as the class):

Example

class Car { // The class

 public: // Access specifier

 string brand; // Attribute

 string model; // Attribute

 int year; // Attribute

 Car(string x, string y, int z); // Constructor declaration

};

// Constructor definition outside the class

Car::Car(string x, string y, int z) {

 brand = x;

 model = y;

 year = z;

}

int main() {

 // Create Car objects and call the constructor with different values

 Car carObj1("BMW", "X5", 1999);

 Car carObj2("Ford", "Mustang", 1969);

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_constructor_param

Provided by VUAnswer.com

Visit more freely solution www.vuanswer.com

 // Print values

 cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n";

 cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n";

 return 0;

}

Run example »

Inheritance

In C++, it is possible to inherit attributes and methods from one class to another. We group the
"inheritance concept" into two categories:

 derived class (child) - the class that inherits from another class

 base class (parent) - the class being inherited from

To inherit from a class, use the : symbol.

In the example below, the Car class (child) inherits the attributes and methods from

the Vehicle class (parent):

Example

// Base class

class Vehicle {

 public:

 string brand = "Ford";

 void honk() {

 cout << "Tuut, tuut! \n" ;

 }

};

// Derived class

class Car: public Vehicle {

 public:

 string model = "Mustang";

};

int main() {

 Car myCar;

 myCar.honk();

 cout << myCar.brand + " " + myCar.model;

 return 0;

}

https://www.w3schools.com/cpp/showcpp.asp?filename=demo_constructor_param2

	What is C++?
	Why Use C++
	Get Started
	C++ Get Started
	C++ Install IDE
	C++ Quickstart
	myfirstprogram.cpp
	myfirstprogram.cpp (1)

	C++ Syntax
	Example
	Example explained

	Omitting Namespace
	Example

	C++ Output (Print Text)
	Example
	Example (1)

	C++ Comments
	Example
	Example (1)

	C++ Multi-line Comments
	Example

	C++ Variables
	Declaring (Creating) Variables
	Syntax
	Example
	Example (1)
	Example (2)

	Other Types
	Example

	Display Variables
	Example

	Add Variables Together
	Example

	C++ Data Types
	Example

	Basic Data Types
	C++ Exercises
	Test Yourself With Exercises
	Exercise:
	C++ Operators
	Example
	Example (1)

	Arithmetic Operators
	C++ Exercises (1)
	Test Yourself With Exercises (1)
	Exercise: (1)
	C++ Conditions and If Statements
	The if Statement
	Syntax
	Example
	Example (1)
	Example explained

	C++ Switch Statements
	Syntax
	Example

	The break Keyword
	The default Keyword
	Example

	C++ Loops
	C++ While Loop
	Syntax
	Example

	C++ For Loop
	Syntax
	Example
	Example explained

	Another Example
	Example

	C++ Break
	Example

	C++ Continue
	Example

	C++ Arrays
	Access the Elements of an Array
	Example

	Change an Array Element
	Example
	Example (1)

	Creating Pointers
	Example
	Example (1)
	Example explained

	C++ Exercises (2)
	Test Yourself With Exercises (2)
	Exercise: (2)
	Create a Function
	Syntax
	Example Explained

	Call a Function
	Example
	Example (1)

	Function Overloading
	Example
	Example (1)
	Example (2)

	C++ What is OOP?
	C++ What are Classes and Objects?
	class
	objects
	class (1)
	objects (1)
	C++ Classes/Objects
	Create a Class
	Example
	Example explained

	Create an Object
	Example

	Multiple Objects
	Example

	Constructors
	Example

	Constructor Parameters
	Example
	Example (1)

	Inheritance
	Example

